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Contaminant Spreading in Stratified Soils With Fractal Permeability 
Distribution 
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Stochastic analysis of flow and transport in the subsurface usually assumes that the soil permeability 
is a stationary, homogeneous stochastic process with a finite variance. Some field data suggest, 
however, that the permeability distributions may have a fractal character with long-range correlations. 
It is of interest to investigate how the fractal character of permeability distribution influences the 
spreading and mixing process in porous media. The results of our analysis of this problem for perfectly 
stratified media with fractal distribution of permeability along the vertical are presented. Results were 
obtained for the transient and asymptotic dispersivities in the longitudinal direction. The results show 
that the macroscopic asymptotic dispersivity depends strongly on the fractal dimension of vertical 
permeability distribution. Specifically, the higher the fractal dimension, the lower the value of 
macroscopic dispersivity. The macroscopic dispersivity was found to be problem-scale dependent in 
transient (development) and asymptotic phases. Variance of fluctuation of concentration was also 
analyzed and found to be dependent on the fractal dimension. In this case, the higher fractal dimension 
results in more mixing of pore water and therefore smoother (smaller trY) concentration distribution. 

INTRODUCTION 

The impact of heterogeneities on flow and mass transport 
in groundwater has been investigated for about two decades. 
Usually, this type of investigation is performed using the 
stochastic, as opposed to the deterministic framework. This 
choice is not based on the assumption that the flow process 
itself is stochastic but rather on the recognition of the fact 
that the deterministic description of the parameter distribu- 
tions would be impractical, if not impossible. 

Initial research in this area did not consider the spatial 
structure of flow properties, assuming that either it behaved 
like the white noise process (lack of spatial correlation), or 
had the layered structure in the direction parallel or perpen- 
dicular to the flow (perfect correlation in one direction). The 
next step was to consider spatial correlation of flow proper- 
ties. Various autocovariance functions, including anisotro- 
pic ones, were used to describe the spatial correlation 
[Dagan, 1984; Gelhar and Axness, 1983]. Excellent review 
of this research is given by Gelhar [ 1986]. However, in most 
of these efforts it was assumed that the correlation structure 

of parameter fluctuations is such that the fluctuation vari- 
ance is bounded and reaches its asymptotic value when the 
volume of the analyzed region increases. The validity of this 
assumption for geologic formations has yet to be demon- 
strated. The field data from the rather homogeneous Borden 
site indicate that, at least for this site, the assumption is 
acceptable. Other sites, however, show scale-dependent 
variance and long-range correlations of subsurface proper- 
ties [Burrough, 1981, 1983a, b; Hewett, 1986]. This evi- 
dence prompted us to investigate the statistical behavior of 
solute transport in heterogeneous systems whose properties 
exhibit long-range correlations. The statistics of such prop- 
erties are described using the concept of fractal, self-similar 
objects. Following that, we examine the behavior of a rela- 
tively simple transport problem: two-dimensional (vertical 
cross section) solute transport in a perfectly stratified medium. 
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FRACTAL PERMEABILITY DISTRIBUTION 

Theoretically, fractal objects are characterized by their 
self-similar structure on all scales and thus have partial 
correlations over long ranges. Such self-similarity may be 
exact, as in the case of the Koch Snow Flake, or statistical, 
as in the case of natural objects [Mandelbrot, 1983]. The 
basic assumption of the classical stochastic analysis of 
subsurface properties is that the variance of increments, or 
variogram, is bounded by the property's variance [Journel 
and Huijbregts, 1989]. 

lim •,(l) = 0.5E{[X(z + l)- X(z)] 2} = o.• (1) 
l--> infinity 

where the •,(l ) is the variogram at I distance lag, X(z) is the 
subsurface properties at position z, and o.x 2 is the property's 
variance. 

One such variogram, used frequently in mining explora- 
tion, is the spherical variogram 

y(l) = o" - 0.5 ß 1 < a !,2) 
y(l)= o'2; l>a 

The interval a, where the variogram reaches its maximum 
value (y(a) = o.2), is called the range. For fractal distribu- 
tions, the variogram is not bounded because of the correla- 
tions over all scales, and is described by a power law 
[Hewerr and Behrens, 1988] 

-y(l) = y0/2H (3) 

where •'0 is the variogram value at I = I and H is the fracta! 
co-dimension, which is equal to the difference between the 
Euclidean dimension in which the fractal distribution is 
described and the fractal dimension of this distribution D. 
Thus for the vertical distribution of hydraulic conductivity K 
the codimension is given by 

H = 2 - D (4) 

since such distribution is described in the two-dimensional 
space K - z. The statistical self-similarity of distributions 
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whose variogram is given by (3) is indicated by the fact that 
variations over any scale rl may be expressed in terms of the 
variations over a scale l by 

y(rl ) = y(l )r TM (5) 

where r is the scaling factor. 
An important conclusion from this relationship is that for 

fractal distributions the variance at any scale can be defined 
by the variance estimated at any other scale. This also 
implies that for the fractal distribution the variance is scale- 
dependent. The variogram may be related to the two-point 
autocovariance function. The definition of the autocovari- 

ance function of process X is given by 

Cx(l) = E{X(z + l)X(z)}- E2{X(z)} (6) 

The relationship between the variogram and the autocovari- 
ance function is defined as follows: 

= 2} - E2{X(z)} - (7) 

Using this relationship and the Wiener-Khintchine theorem 
[Hewerr, 1986], 

c(t) = 2 cos (fl) (8) 

where S x(f) is the spectral density of X(z), it can be 
demonstrated that the spectral density of the fractal objects 
will also have the power law form, 

Sx(f) = Sof -• (9) 

where So is the spectral density at f = 1 and/3 = 2H + 1. 
For fractal processes, /9 is constrained between 1 and 3 
[Hough, 1989; Voss, 1985]. 

Thus the fractal dimension of a given process may be 
estimated by plotting the variogram and the spectral density 
of the process on logarithmic coordinates and calculating the 
slopes. Both slopes (2H = 4 - 2D and ]3 = 5 - 2D) should 
result in the same fractal dimension D. 

Several sets of hydraulic conductivity data have been 
analyzed by Ababou and Gelbar [1990] and Kemblowski and 
Chang [1992]. Their analyses indicate that the vertical dis- 
tribution of hydraulic conductivity is characterized by a 
highly irregular character, with the fractal dimension varying 
between 1.825 and 2.0. In the next section we will explore 
the relationship between this fractal dimension and solute 
spreading. 

ANALYSIS OF SPREADING IN STRATIFIED POROUS MEDIA 

The specific scenario considered in this paper assumes 
that groundwater flows horizontally in a perfectly stratified 
aquifer. Thus in the horizontal direction the correlation scale 
of permeability is infinite, whereas in the vertical direction 
permeability is described as a stochastic process. Mass 
transport of a conservative tracer in such a situation consists 
of horizontal advection, and horizontal and vertical local 
(pore level) dispersion. This transport problem is described 
in detail by Gelbar et al. [!979], who also derived for this 
scenario a general relationship between the stochastic struc- 
ture of hydraulic conductivity and the longitudinal macro- 
dispersivity. Using their general results, we will investigate 

the behavior of macrodispersivity for the case when the 
vertical distribution of permeability is fractal. The relation. 
ship between asymptotic longitudinal macrodispersivity, A. 
and the spectral density function of the vertical distribution 
of hydraulic conductivity, Sfœ, is given by 

+O• S(f) (1 - e -bt) A=2 K2 øt rf 2 df , (10) 

where b = arUf 2, ar is the local transverse dispersivity, U 
is the average pore water velocity, K is the mean hydraulic 
conductivity, and f is the wave number. The large time limit 
of macrodispersivity A is given by 

f lo• S(f) df Ao• = 2 K2 arf2 (11) 

At this point we can start considering the behavior of solute 
transport spreading in media with fractal hydraulic conduc- 
tivity distribution. Such distributions are characterized by 
the spectrum: 

S(f) = s0[fl 

It is apparent that the spectrum is not bounded when the 
frequency approaches zero. This can be understood when 
one remembers that the low frequencies are associated with 
large distances and that as the lag approaches infinity, so 
does the variogram of a fractal process. In this paper we 
assume that the self-similar behavior of log K distribution 
has a lower frequency limit. We use the characteristic cutoff 
frequency f0, which is assumed to be the lower limit of 
self-similarity, and the associated characteristic length scale• 
L0 

2•'/' 
œo = 

Lo 

It is assumed that any frequencies smaller than f0 do not 
contribute to the spectral density function. The characteris- 
tic length scale L0 may be indirectly related to the contarn- 
inant plume dimension. However, it is emphasized that L0 
does not represent the characteristic plume dimension in the 
strict sense. To account for the final size of a contaminant 

plume, the power spectrum (12) would have to be modified 
to represent a finite-size process. We can now redefine the 
spectral density as follows: 

S(f) = s01/I -• f> f0 (14a) 

s(f) = 0 otherwise (14b) 

It is worth noting that although in general the fractal pro- 
cesses are considered nonstationary [Mandelbrot, 1983], 
these processes become quasi-stationary when the self- 
similarity occurs only over a certain range, bounded by an 
upper characteristic length scale L0. In this case the vari- 
ance of the process is bounded, and the autocovariance 
function depends only on the spatial lag. This characteristic 
allows us to use the Gelhar et al. [ 1979] results to analyze the 
spreading process in soils with fractal permeability distribu- 
tion. Substituting the fractal spectrum into (11) leads to the 
following relationship for asymptotic macrodispersivity: 
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Fig. 1. Spectral density for D = 1 and D = 2, S O = const. 
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Fig. 2. OA•/OD for constant variance of K over L o. 
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Ao• = 2( (15) ark 1 + ]3) •ZTK2(6 -- 2D) 

It is of interest to investigate the impact of fractal dimension 
D on macroscopic dispersivity. The derivative of A= with 
respect to D is given by 

• = -2A• In (16) 

Analysis of this relationship shows that, except for very 
small values of L0, macroscopic dispersion, Ao•, decreases 
when the fractal dimension of K increases. This agrees with 
our physical intuition. As the fractal dimension increases, 
the front of the plume becomes "rougher," which leads to 
more mixing between the "layers." This enhanced vertical 
mixing reduces the horizontal spreading. Note that for the 
same reason macrodispersivity is inversely correlated with 
local transverse dispersivity. The positive correlation be- 
tween macrodispersivity and the fractal dimension for small 
values of L 0 is an artifact which reflects the fact that by 
keeping So constant and increasing D (which is equivalent to 
decreasing /3), we increase the power (variance) of the 
process associated with higher frequencies (Figure 1). 

A more appropriate way to analyze the correlation be- 
tween the fractal dimension and macrodispersivity is to 
assume that the variance of K over L0 remains constant. 
This variance can be estimated as follows for D < 2: 

2(L0) = cr 0 2 S(f) df = 2 Sof df 

{17) 

Substituting this equation into (15) leads to 

cr2(L0) • (]3- 1) o'• • -2D) 
A:x• • 

a rK2(! +/3) a rK2(6 - 2D) 
(18) 

The derivative of A:• with respect to D can be estimated as 
follows 

OD a rK2(6 - 2D) - 2D 1 { 19) 
The behavior of A• for •(Lo/2•)2/ar K2 = 1 is shown in 
Figure 2. It can be seen that OA•/OD is in this case (for 
constant v•ance •) •ways negmive, and its absolute 
magnitude increases with D. This again demonstrates that 
the higher fractal dimension enhances the vertical mixing 
process and therefore decreases the hohzontal spreading. 

Figure 3 depicts the behavior of the norm•ized asymp- 
totic dispersivity (the dispersivity normalized with reg•d to 
the asymptotic dispersivity at D = 1) as a function of fractal 
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Fig. 3. Normalized asymptotic macrodispersivity as a function of 
fractal dimension of K. 
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Fig. 4. Effective mixing coefficient as a function of D. 

dimension D. It can be clearly seen that the asymptotic 
dispersivity decreases as the fractal dimension decreases. In 
fact, for the fractal dimension D approaching 2, we have the 
case of perfect mixing (which is similar to the case of a r 
approaching infinity, although in this case the mixing is 
caused by the fact that the vertical distribution of K com- 
pletely fills the x-z plane). Because of the perfect mixing 
effect there is no longitudinal spreading related to the heter- 
ogeneous velocity field. This problem can be illustrated by 
introducing the concept of an effective mixing coefficient, 
aeff½ctiv½ , defined as follows: 

a r(6 - 2D) 

øreflective = (4- 2D) (20) 
Using this definition, the asymptotic macrodispersivity may 
be defined as 

A•o = 2 (21) 
t• effective K 

The behavior of the normalized effective mixing coeffi- 
cient, aeffective/aT, as a function of the fractal dimension is 
shown in Figure 4. The effective mixing coefficient seems to 
be most sensitive to the changes in the fractal dimension in 
the region 1.8 < D < 2. Field data suggest that the fractal 
dimension of the vertical distribution of hydraulic conduc- 
tivity lies precisely in this region [Ababou and Gelhar, 1990]. 
It may be therefore difficult to estimate the effective mixing 
coefficient with adequate accuracy since this would require 
robust estimation procedures for D. 

It is worthwhile noting that (18) is similar to the one 
obtained by Gelhar et al. [1979]. There are, however, two 
significant differences. First of all, in the fractal case, the 
variance of K is scale-dependent. Second, the correlation 
scale in this case is related to the characteristic scale, since 
the vertical hydraulic conductivity distribution has the cor- 
relation scale theoretically equal to infinity. 

To better understand the behavior of the dispersion pro- 
cess, macrodispersivity is evaluated as a function of travel 
time, or more specifically, travel distance. Substituting (14) 
into (10) leads to the following result: 

A 
--= 1 - exp 
Aoo Lo 2 2-D 

iLo)2 F D- 1, Lo 2 
2-D (22} 

where x is the average travel distance, x - Ut, and F(/•, •'} 
is the incomplete Gamma function. The transient behavior of 
macrodispersivity, as a function of normalized travel dis. 
tance X = arx/(Lo/2 st) 2 and fractal dimension D, is shown 
in Figure 5. It appears that the asymptotic values of macro. 
dispersivity is reached at X equal approximately 1 regardless 
of the fractal dimension magnitude. The fractal dimension 
influences the development of the spreading process only to 
a limited degree. Specifically, the asymptotic value is 
reached slightly faster for the higher fractal dimension of K. 
It is interesting to note that the travel distance required to 
reach the asymptotic behavior depends not only on the pore 
level transverse dispersivity but also on the scale of the 
problem, namely the characteristic length L0. Thus the 
spreading process in fractal porous media appears to be 
scale-dependent in the development and asymptotic phases. 

Fluctuations About the Mean Concentration Field 

In addition to our interest in understanding the process 0[ 
spreading of the mean concentration field, we are als0 
interested in characterizing the concentration fluctuations 
about the mean concentration field. This interest is related to 

two problems. First of all, it is important to understand the 
uncertainties associated with using the mean concentration 
field to characterize contaminant transport. Related to this 
problem is the issue of field data interpretation and model 
calibration. 

The second problem is more fundamental. For the last two 
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Fig. 5. Development of the spreading process. 
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decades, most of the groundwater literature concerned with 
contaminant •zransport has exhibited certain confusion be- 
tween two processes: (1) spatial spreading of contaminant 
plumes, and (2) mixing of pore water. In fact, the very name 
used to describe the process of spreading-dispersion, is 
strongly suggestive of mixing. This confusion is perhaps not 
very important as long as we are analyzing transport of 
nonreactive tracers. However, as soon as we start looking at 
transport of reactive species, the difference between spread- 
ing and mixing becomes of utmost importance. One example 
of this problem is aerobic degradation of organics in ground- 
water. In order to facilitate biodegradation, oxygen and 
organics have to be actually mixed in the aqueous phase. 
Using the spreading coefficient to simulate the mixing pro- 
cess results in significant overestimation of biodegradation 
rate. 

There are, in our perception, two principal questions 
related to this issue. These questions could be phrased as 
follows: (1) what does the macrodispersivity estimated for 
the average concentration field mean in the physical sense, 
and t.2) how is this parameter related to the process of mixing 
between hydrocarbon and oxygen plumes. To simplify our 
discussion, we would like to refer to the results published by 
Gelhar et al. [1979]. We believe that this discussion could be 
readily extended to more complex situations. The asymp- 
totic value of macrodispersivity obtained by Gelhar et al. 
[1979] for a specific autocorrelation function is given by 

2 
= (23) AN 3K2a T 

Consider the behavior of this parameter under the influ- 
ence of two processes: (1) advective spreading, and (2) 
vertical mixing. First of all, it is obvious that for a lower 
magnitude of the vertical pore level dispersion (i.e., less 
mixing), the value of asymptotic dispersivity will be larger, 
resulting in larger horizontal spreading of the mean concen- 
tration field. Without mixing, the asymptotic dispersivity is 
equal to infinity, and its transient behavior is given by 
Mercado's results. Similarly, the mixing process is slowed 
down by larger vertical correlation scale of K (smaller local 
gradient of C). The spreading process is, however, enhanced 
by the variability (coefficient of variation) of the hydraulic 
conductivity field. A similar analysis could be performed 
using the results presented in this paper for fractal perme- 
ability distributions. 

It is apparent that the less significant the mixing process is, 
the larger the apparent dispersion (spreading) will be. If this 
is the case, then obviously macrodispersivity (understood as 
a parameter that determines the smoothing of the mean 
concentration field) is not a good parameter to describe the 
mixing process. To get a better feel for these interwoven 
processes, one can look at the variance of the concentration 
field. If the concentration variance is zero, then the mean 
concentration is equal to the actual concentration, and the 
spreading and mixing processes can be described by the 
same parameter, macrodispersivity. As the concentration 
variance increases, the two processes drift apart. The vari- 
ance of concentration fluctuations can be estimated by using 
the spectral density of the concentration fluctuations 

: = E[cc] = j_•• Scc df •r cc 

The spectral density can be estimated using the following 
relationship: 

S ccdr = E(dZcdZ*c) (25) 

where [Gelhar et al., 1979]: 

dZk .} - e 
- 

, .... 

a2 (26) 

and dZ• is the complex conjugate of dZ•. Thus the spec- 
trum of concentration fluctuations is 

- 
1 - (1 + a t)e 

a 2 S• (27) 

Using (27), we can estimate the v•ance of the concentra- 
tion fluctuations 

2 = E[cc] = Scc df= • 2G 2 •cc 

ß ay- o, 

: 1-e 1-(1 +at)e -a ß • S• df 

: 1-(1 + at)e ' "a 2 S• (28) 

where 

OC 3 02C 
G = - •+ (29) 

0• 2 0e2 

ot = a rUf 2 {30) 

Equation (28) can be simplified by neglecting the higher- 
order derivatives of mean concentration (C) in the following 
terms: 

Using this simplification and the fractal spectrum of the 
permeability distribution, we can estimate the concentration 
variance 
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exp (-X)[2 - exp (-X)](2 - D) 

X2(8- 2D) 

exp (-X)[1 - exp (-X)](2 - D) 

X(4 - D)(3 - D) 

exp (-X)[1 - 2 exp (-X)] 

(4 - D)(3 - D) 

x2-D 
+, 

(4 - D)(3 -D) 
r(D- X) 

2(2X)2-D -- (4 -- D)(3 - D) F(D - 1, 2X) (32) 

Analysis of this result shows that the concentration variance 
decreases as the fractal dimension increases. This can be 

perhaps best demonstrated by studying the large-time behav- 
ior of concentration variance by assuming that time t ap- 
proaches infinity. The result is given by 

lim Crcc= (aTU)2(8 - 2D) (33) t-.m, and X---• • 

It is encouraging to see that the concentration variance does 
not grow at infinity. The asymptotic value of concentration 
variance depends strongly on the effective mixing coeffi- 
cient, which in turn depends on the fractal dimension. To 
investigate this relationship, we analyze the behavior of a 
normalized concentration variance, which is here defined as 
follows' 

3(2- D) 
fr2 I, -- _ (4 - D) (34) 

The behavior of the normalized concentration variance is 

depicted in Figure 6. The asymptotic concentration variance 
decreases when the permeability distribution's fractal di- 
mension increases. This behavior seems to be consistent 

with our results for macrodispersivity. The higher fractal 
dimension enhances the mixing process, which in turn 
smooths the concentration distribution (smaller concentra- 
tion variance) and results in less horizontal spreading. 

It is also of interest to investigate the transient behavior of 
the concentration variance. This can be performed by ana- 
lyzing the behavior of a normalized concentration variance 
defined as follows: 

- 2 Cr•c(X, D) I6(2 - D) cr co(X, D) = 2 (X--> ee, D 1) --" 0" CC -- 

6 exp (-X)[2- exp (-X)](2- D) 

(8 - 2D) 

6X exp (-X)[1 -exp (-X)](2- D) 
-Jff , , 

(4 - D)(3 -o ) 
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Fig. 6. Normalized asymptotic variance of concentration fluctua- 
tions. 

6X 2 exp (-X)[1 - 2 exp (-X)] 
(4 - D)(3 -D) 

6X 2 - D 
+ r(D- 1, X) 

(4 - D)(3 -D) 

3 (2X) 4 - D } F(D- 2X) 
(4 - D)(3 -D) 

(35) 

Figure 7 depicts the behavior of this normalized concentra- 
tion variance. The transient behavior of concentration vari- 
ance seems to be similar for all values of the fractal dimen- 

sion D. The concentration variance grows rapidly betweenX 
= 0 andX = 1. For 1 < X < 4, the rate of growth is 
significantly smaller, and at about X = 4 the variance 
reaches its asymptotic value. It is worth noting that this 
behavior is quite similar to the transient development of 
macrodispersivity. 
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Fig. 7. Normalized variance of concentration fluctuation. 
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SUMMARY 

The impact of the fractal dimension of the vertical distri- 
bution of hydraulic conductivity on the behavior of soluble 
plume spreading was investigated. It was found that the 
fractal dimension has a major impact on the value of asymp- 
totic macrodispersivity. A higher fractal dimension enhances 
vertical mixing and results in less longitudinal advective 
spreading of the plume. For the fractal dimension approach- 
ing 2, the longitudinal spreading of the plume disappears 
altogether. Our results also indicate that the asymptotic 
dispersivity is a scale-dependent parameter. In particular, its 
value depends on the characteristic thickness of the soluble 
plume and the variance of the K process over this thickness. 

The transient development of the spreading process does 
not appear to depend on the fractal dimension. Our analysis 
indicates that the travel distance necessary to reach the 
asymptotic conditions is also scale-dependent and is directly 
proportional to the squared characteristic thickness of the 
plume (L•), and inversely proportional to the pore level 
transverse dispersivity (at). 

In addition to analyzing the spreading of mean concentra- 
tion field, we also investigated the impact of the fractal 
dimension of permeability distribution on the concentration 
fluctuations. The results indicate that the concentration 
variance decreases when the fractal dimension increases. 

This behavior is explained by revoking that the higher fractal 
dimension enhances the mixing process, which in turn 
smooths the concentration field. 

It is recognized that these results were obtained for a 
rather idealized transport scenario of perfectly stratified 
media. In our opinion the results presented in this paper 
show the qualitative behavior of the spreading process for 
fractal distributions of hydraulic conductivity. We are cur- 
rently working on the fully three-dimensional case with 
isotropic and anisotropic fractal distributions of log K. The 
results of this effort will be reported in the near future. 

It is felt, however, that even the qualitative results pre- 
sented herein lead to narrowing the gap in our understanding 
of subsurface transport processes, particularly regarding the 
actual mixing of soluble plumes with surrounding groundwa- 
ter. It is a very important phenomenon which has not been 
given enough attention in the past. It is generally agreed that 
the mixing of soluble contaminant plumes with the oxygen- 
containing groundwater is, along with the actual aerobic 
biodegradation process, the major mechanism contributing 
to and limiting the biodegradation of soluble hydrocarbon 
plumes (see, for example, Frind et al. [1989]). Our results 
clearly indicate that there is a strong connection between the 
fractal dimension of K and the mixing process. 
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