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ABSTRACT

In this paper, the kriging method with stochastics was applied in
order to study the spatial structure of precipitation distributions.  Mean
areal precipitation and the spatial structure of six storms over the Tsen-
Wen River basin were examined by semivariograms of the storms.

Findings revealed topographic influences on the rainfall distribu-
tions in the study area.  These impacts were reflected in the difference
between the mean areal precipitation of the kriging and the Thiessen
methods and the correlation structure (or range) of the rainfall
distributions.  The mean areal precipitation showed a difference of
2.5% in favor of the kriging method.  The range of the rainfall distri-
bution averaged about 46.17-km, a very close correlation to the down-
stream length, 47-km, of the Tsen-Wen River.  In addition, the smaller
the standard deviations of the precipitation distributions, the more ap-
propriate it is to use the assumption of the second-order stationarity
for investigating the storm structures.

I. INTRODUCTION

The evaluation of mean seasonal or annual rain-
fall over basins is common for water-balance research.
Daily (or hourly) areal averages and evaluations of
storms are necessary in flood forecasting, specifically,
for real-time reservoir operations or model calibra-
tion of rainfall-runoff models.  Under homogeneous
distribution of rainfall in river basins, many methods
for the estimation of mean areal precipitation have
been developed over the past few decades.  The meth-
ods include the Thiessen polygons, arithmetic, and
ilsohyeta methods (Chow, 1964; Linsley et al., 1975).
However, applying these methods to a large river
basin relies on a tremendous amount of paper work
and manpower.  Also, not investigated in these meth-
ods are the impacts from the topographic variations
of a basin on the estimates of the mean areal precipita-
tion.

Due to spatial patterns of topographic variation

in the study area, spatial rainfall distributions are
considered as random fields so that the distributions
can be studied by means of stochastic approaches over
the field (Mejia and Rodriguez-Iturbe, 1974; Bras and
Rodriguez-Iturbe, 1985; Chua and Bras, 1980).  The
method for using stochastic approaches for random
fields is by analyzing the spatial structure of the fields
(de Marsily, 1986; Bakr, 1976; Gelhar, 1986;
Kemblowski and Wen, 1993).  However, the stochas-
tic approaches are used indirectly to obtain estimates
of the mean areal precipitation.  The estimate of the
mean areal precipitation is extracted from within the
results of the stochastic equations.

Kriging techniques provide linear estimates of
minimal variance.  Chua and Bras (1980) and de
Marsily (1986) used them with stochastic approaches.
The kriging techniques were based on the concept of
linear interpolation and the average rainfall over the
concerned basins.  This combination was used to ob-
tain the mean areal precipitation.  During the
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estimation of the mean areal precipitation, stochastic
approaches with semivariograms were involved in the
kriging techniques as estimators.  However, unlike
Chua and Bras and de Marsily, most researchers
(Delhomme, 1979; Delfiner and Delhomme, 1973;
David, 1976) have not attempted to investigate the
spatial structure of random fields.  For the investiga-
tion of spatial structure, covariances of random fields
were used (Meija and Rodriguez-Iturbe, 1974; Bakr,
1976; Gelhar, 1986; Kemblowski and Wen, 1993).

There are two ways to derive covariances of ran-
dom distributions.  The first way is to obtain spec-
trums of the rainfall distributions, and then to find
the covariances with the Wiener-Khintchine relation
by integral schemes.  The second way is to obtain the
covariance directly from the data of random fields.
The latter way is easier in practice than the former.
Since two filters are involved in the first method,
spectrums of random processes and the Wiener-
Khintchine relation, covariances derived from the first
method have less noise than the second.  For practi-
cal reasons, the first one has many more mathemati-
cal procedures to complete to derive the covariance
than the second.  Therefore, in this paper, the latter
procedure, due to its simplicity, is used for the esti-
mation of the semivariograms in the kriging method.

In addition, the second-order stationarity hy-
pothesis can be applied where the mean is constant
and the covariance is a function of the distance be-
tween neighboring points only.  By applying the sec-
ond-order stationarity to rainfall distributions, the
semivariograms of the rainfall distributions are there-
fore able to be equal to the variance of the distribu-
tions minus the covariance of the distributions when
an extra equation is included.  Consequently, it is
possible to investigate spatial structures of rainfall
distributions with semivariograms.

The aim of this paper is to employ the kriging
technique with stochastic approaches to obtain esti-
mates of the mean areal precipitation over the Tsen-
Wen River basin on a pacific island, Taiwan.  Con-
cepts of the kriging method in Chua and Bras (1980)
and de Marsily (1986) are combined with the esti-
mates of the mean areal precipitation in this paper.

The important point of this article is that the es-
timates of the mean areal precipitation and the inves-
tigation of spatial structures of rainfall distributions
are accomplished by estimates derived from the
semivariograms of the rainfall distributions over the
Tsen-Wen River basin.  One difference (from the
work of Chau & Bras and de Marsily) is that they
used the second-order stationarity hypothesis by in-
cluding an additional equation to arrive at semi-
variograms.  In this paper, reference will be made to
another hypothesis known as the intrinsic hypothesis.
To arrive at semivariograms, this hypothesis will

replace the second-order stationarity, since the in-
trinsic hypothesis includes the semivariogram
equation directly without requiring additional
calculations.

II. MATHEMATICAL DESCRIPTION OF THE
KRIGING METHOD

In general, kriging is a method for optimizing
the estimate of a magnitude, which is distributed in
space and is measured at a network of points.  Let u1,
u2, ..., and un be the locations of the n observation
points and ui denote a two-dimensional representa-
tion.  Also, let Z(ui) be the value (such as: precipita-
tion) measured at point i.  The problem with the esti-
mation of a point lies in determining the value of the
quantity Z(u0) for any point u0 that has not been
measured.  By continually modifying the position of
the point u0, it is thus possible to estimate the whole
field of the parameter.  De Marsily (1986) gives an
excellent review of the kriging method.

This study deals with random distributions of
rainfall to obtain the mean areal precipitation.  Pre-
viously the second-order stationarity used with the
kriging method was mentioned.  This method involves
the mean of the rainfall distribution and the covari-
ance of the distance between points only.  However,
a more reliable method, known as the intrinsic hy-
pothesis can also be used when the random distribu-
tions of rainfall are stationary (Matheron, 1970; de
Marsily, 1986).  As mentioned previously, this hy-
pothesis includes the semivariogram equation directly
without making any additional calculations, such as
are required by the second-order stationarity to ar-
rive at semivariograms.

There are two conditions for the intrinsic hy-
pothesis which Z(u1)−Z(u2) satisfies:

E[Z(u1)−Z(u2)]=m(h), (1)

Var[Z(u1)−Z(u2)]=2γ(h), (2)

where

m(h) represents the mean of Z(u1)−Z(u2) and is
a function of h only,

γ(h) denotes the semivariogram of rainfall dis-
tributions Z(ui) and is a function of h only,

Var[Z(u1)−Z(u2)] represents the variance of
Z(u1)−Z(u2),

Z(ui) denotes the measured rainfall at observa-
tion points ui,

and

h is equal to u1−u2.
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Another name for m(h) is “drift”.  A simple way
to estimate the drift, mathematically, is to assume that
the drift has a linear relation with h and is expressed
as

E[Z(u1)−Z(u2)]=ah,

where a is some constant.  However, in practical
applications, the drift is sometimes assumed to be
constant (i.e., a=0, and called “no drift”) in which
case the semivariograms can be estimated directly
from the observations Z(ui) without estimating the lin-
ear drift coefficient, a, beforehand.

By the way, the operator in Eq. (1), E[  ], de-
notes taking expectations of random distributions
Z(u1)−Z(u2).  In this paper, rainfall distributions in
the Tsen-Wen River basin are assumed to be
stationary.  The drift is therefore zero.  The expected
value of rainfall distributions Z can be derived from
Eq. (1) as

E[Z(u1)]=E[Z(u2)]=m=constant. (3)

It is apparent in Eq. (3) that the mean of rainfall
distributions is constant, known as no drift of rain-
fall distributions.  Therefore, the semivariograms can
be estimated directly from the observations Z(ui) with-
out the need to estimate the linear coefficient, a.

For the investigation of spatial structures of rain-
fall distributions with the second-order stationarity,
the covariance of rainfall distributions can be writ-
ten as (de Marsily, 1986)

E[Z(u1)−Z(u2)]=σ2−γ(u1−u2), (4)

where E[Z(u1) Z(u2)] denotes the covariance function
of the rainfall distribution between u1 and u2, and σ2

denotes the variance of rainfall distribution.  In this
case, the variance σ2 has to be finite (Eq. (2)) so that
the rainfall distributions satisfy the second-order
stationarity assumption.

One of the interesting quantities in this paper is
the mean areal precipitation over some area of inter-
est S0.  The true unknown mean areal precipitation,
denoted ZS0

, can be expressed as

  Z so
= 1

so
Z( u )d u

so

. (5)

The objective of this work is to find the BLUE
(the best linear unbiased estimate),   Z so

* , of the true
unknown value, ZS0

.  The BLUE, also known as
kriging, is defined as (Chua and Bras, 1980):
(i) Linear: The estimator,   Z so

* , is formulated with a
linear combination of the measured values of
Z(ui):

   Z so

* = λ iZ( u i)Σ
i

n
, (6)

where λ i represents the optimal weight at loca-
tion ui.

(ii) Unbiased: Theoretically, it is required that the
expected value of the estimator,   Z so

* , has to equal
the expected value of the true unknown mean ar-
eal precipitation, ZS0

, i.e.,

  E[Z so

* ] = E[Z so
] . (7)

(iii)Best criterion: If the estimated variance of the
estimator,   Z so

* , were minimal, it would be consid-
ered best.  The estimated variance, called the
mean square error (MSE), is defined as

   σ z so

2 = Var[(Z so
– Z so

* )] = E[(Z so
– Z so

* )2] . (8)

Under the assumptions that the semivariogram
is known and the mean is stationary (no drift), the
BLUE condition is satisfied.  Therefore, substituting
Eqs. (5) and (6) into Eq. (7), yields

   m[ λ i– 1Σ
i = 1

n
] = 0 . (9)

In Eq. (9), m denotes the mean areal precipitation and
does not have to be zero.  Consequently,

   λ iΣ
i = 1

n
= 1 . (10)

As indicated in Eq. (10), the sum of the optimal weight
equals one.  Then, the equations for BLUE with
Eq. (10) can be used for obtaining the optimal weight
(λ i) with the multiplier of the Lagrangian method.
Therefore, a system of kriging in matrix form is
reached as follows:

   0 0 γ13 γ1n 1
γ21 0 γ23 1
γ31 γ32 0

γn1 γn2 γn3 0 1
1 1 1 1 0

λ 1

λ 2

λ n

µ

=

γio
γ2o
γ3o

γno

1

(11)

and the estimated variance is

   σZ so

2 = λ iγioΣ
i = 1

n
+ µ – γ12 , (12)

where the semivariograms used in Eqs. (11) and (12)
are known, as below:

   γio = 1
So

γ( u i – u )d u
So

, (13)
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   γij = 1
so

2 So

γ( u i – u j)d u id u j
So

. (14)

Equation (11) shows that the optimal weight can
be solved when the semivariograms γij and  γio  are
known.  Eq. (12) expresses the estimated variance of
the mean areal precipitation.  The estimated variance,
in statistics, can be used for error investigation of the
estimates of mean areal precipitation.

An important finding is that both Eqs. (11) and
(12) are expressed in terms of semivariograms, which
are derived by investigating the spatial structures of
the rainfall distributions.

III. RAINFALL DATA IN STUDY AREA

The study area, the Tsen-Wen River basin, is in
the southwest of Taiwan.  Fig. 1 shows a location map
of the Tsen-Wen River basin with its main rivers in-
cluding two main tributaries.  The catchment is over
1,190-km2 in size, and the total length of the Tsen-
Wen River is around 138.5-km.  Specifically, it is 47-
km in length at the downstream plain area.  It goes
from east to west and finally flows into the Taiwan
Strait.  The basin includes four reservoirs: Tsen-Wen
Reservoir ,  Wu-Sen-Tao Reservoir ,  Nan-Hwa
Reservoir, and Gin-Men Reservoir.  Going from the
largest reservoir to the smallest, respectively, the
Tsen-Wen Reservoir in Taiwan is 481-km2 in size,
the Nan-Hwa Reservoir is 112-km2, the Wu-Sen-Tao
Reservoir is 60-km2, and the Gin-Men Reservoir is 2.
73-km2.

Topographically, the catchment consists largely
of mountainous areas in the east and flows into

flatter flood plains in the west.  The eastern end of
the basin is steeper with the averaged slopes being
about  1

1000
~ 1.5

1000
.  The average elevation of the ba

sin is 100m above mean sea level.  The basin has a
very high precipitation density during the summer,
which is usually a result of typhoons, a kind of tropi-
cal storm.

Many precipitation stations are in the Tsen-Wen
basin.  However, according to the brochure published
by the National Central Weather Bureau (NCWB),
there are 13 NCWB stations, including 11 automatic
rain gauges and 2 manual rain gauges.  These were
selected for the study.  The selected stations are gov-
ernment controlled and are more reliable than the
other stations in the area.  The other stations are pri-
vately owned and are operated for personal interest
rather than for public service.  The locations of the
selected stations are indicated in Fig. 2.

Six storms have been chosen for the study.
Three of the storms occurred in 1990 and the rest of
them in 1992.  All the rainfall data at the selected 13
stations are provided by NCWB.  The point mean,
also known as the arithmetic mean, and point vari-
ance of each storm are therefore estimated and shown
in Table 1.

With an investigation of the point means and the
point variances, storms No. 2 and 4 are found to have
higher point means and storms No. 1, 2, and 4 are
found to have larger point variances than the other
storms.  These results reflect unstable conditions.
These unstable conditions are the result of topogra-
phic influences in the study area.  Therefore, as ex-
pected, the assumption of the second-order sta-
tionarity is not appropriate to apply to storms No. 1,

Fig. 1  Tsen-Wen River basin (scale 1:500000)

Fig. 2  Rainfall stations in Tsen-Wen River basin (scale 1:500000)
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2, and 4 (Gutjahr et al., 1978).
Since mean areal precipitation is customarily

estimated by the Thiessen method, it is therefore ob-
tained initially by the Thiessen method and compared
later to the kriging method.  Therefore, the estimated
mean areal precipitation, using the Thiessen method,
for the selected six storms, is presented in Table 2.
Table 3 indicates the weight factors of the selected
rainfall stations estimated by the Thiessen method.

The weight factors from the Thiessen method
for the selected rainfall stations reflect no impacts
from the topography on the rainfall distributions.  In
other words, the assumption that rainfall distributions
have to be uniformly distributed on a river basin has
to be satisfied when the Thiessen method is employed.
Here, that appears to be the case.  However, when
the Thiessen results are compared to that of kriging,
a variation of the weight factors is found, indicating
impacts from the topographic influences on the rain-
fall distributions.

IV. SPATIAL STRUCTURES AND MEAN
AREAL PRECIPITAION ESTIMATES OF

RAINFALL DISTRIBUTIONS

As mentioned earlier, an experimental semi-
variogram can be computed from the raw data when
a stationary drift assumption is made.  Biases intro-
duced by estimating the mean are therefore avoided.
In estimating the experimental semivariograms, pairs
of stations were grouped according to their separa-
tion distance |h|.

In the study case of irregularly spaced observa-
tion stations, stations that lie within discrete ranges

are grouped together by pairs (de Marsily, 1986).  In
such a case, nh denotes the number of paired stations
that lie between some interval defined by h1 and h2.
h represents an average value given by

   
h = 1

n h
h αΣ

α = 1

n h

, (15)

where |h1|<|hα|<|h2| and α=1, 2, ..., nh.  In addition,
isotropy is assumed for the use of Eq. (15).  Table 4
indicates the distance intervals in kilometers; the
average distance, h, within each interval; and the
number of paired stations (nh) within each interval.

After separation distances of stations have been
evaluated, then we can calculate semivariograms of
the rainfall distributions.  From the observed rainfall
distributions at the stations, calculations can be made
by using the following equation:

   γ( h ) = 1
n h

{Z( u i + h ) – Z( u i)}
2Σ

i = 1

n h

. (16)

Equation (16) denotes the semivariogram ex-
pression for discrete data observed at the stations.
With the equation and the observed rainfall distribu-
tions at 13 stations for six storms, the semivariograms
of the six storms are computed (Figs. 3~8).  Conse-
quently, the spatial structures of the rainfall distribu-
tions are investigated with the estimated semi-
variograms.

1. Spatial Structures of Rainfall Distributions

A prevailing model chosen for the experimental

Table 1  Point means and point variances of six storms

Storm No. 1 2 3 4 5 6

Date June,22,1990 Aug,18,1990 Sep,07,1990 Aug,29,1992 Sep,03,1992 Sep,19,1992
| | | | | |

June,24,1990 Aug,23,1990 Sep,10,1990 Sep,02,1992 Sep,06,1992 Sep,24,1992

Point Mean (cm) 27.60 53.20 29.30 41.39 19.70 13.10
Point variance 82.34 466.40 40.70 31.47 7.24 16.33

Table 2  Mean areal precipitation (MAP) estimated by the Thiessen method

Storm No. 1 2 3 4 5 6

MAP by Thiessen (cm) 28.08 55.23 28.69 42.31 19.65 13.60

Table 3  The weight factors of the rainfall stations obtained by the Thiessen method

Storm No. 1 2 3 4 5 6 7 8 9 10 11 12 13

Weight 0.0842 0.0893 0.1024 0.1173 0.0596 0.0938 0.0801 0.0693 0.0785 0.0995 0.0257 0.0599 0.0394
factor
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semivariograms is the spherical semivariogram (Chua
and Bras, 1980; de Marsily, 1986; Journel and
Huijbregts, 1989),

   

γ(h) =
C o + C[1.5(ha ) – 0.5(ha )3] , h ≤ a

C o + C , h > a
,    (17)

where

Co=the nugget effect,

Co+C=the sill,

and

a=the range.

With the spherical semivariogram, a curve fit-
ting method for establishing the sill, the range and
nugget effect follows.  The spherical semivariograms
of six storms are presented in Figs. 3, 4, 5, 6, 7, and
8.  In addition, the functions of the spherical semi-
variograms are listed in Table 5.

The estimated semivariograms of the six storms,
estimated with Eq. (16), are found to vary following
the application of the function of the spherical
semi-variogram of Eq. (17).  Specifically, the varia-
tions of the spherical semivariograms of storms No.
1, 2, and 4 are much higher than the spherical

semivario-grams of the other storms.  Also, as previ-
ously men-tioned, the point variances of storms No.
1, 2, and 4 are much higher than the other storms.
Therefore, as revealed here, the second-order sta-
tionarity is not appropriate for describing the spatial
structures of storms No. 1, 2, and 4, especially if their
semi-variograms do not reach an asymptotic behavior,
as in this case.  However, some physical behaviors of
the river basin, such as the range, which reflects to-
pographic effects on rainfall distributions, can still
be explained by use of spherical semi-variograms.

Upon viewing Table 5, it is apparent that the
ranges of the six storms are from 40~52 kilometers.
This reveals that the structure of the rainfall distribu-
tions in the study area is highly correlated within this
range. This result is very close to the downstream
length, around 47-km of the Tsen-Wen River, which
flows at the Chia-Nan plain.  If an ensemble mean of
the ranges with multi-realization is taken into account,
the mean value is about 46.17-km.  This value is al-
most equal to the downstream length, which reveals
a direct correlation between land structure and rain-
fall distributions.

This argument can be explained by recalling
that storm models for calculating possible precipita-
tion have to consider topographic changes.  This re-
veals that the storm structure is disturbed under
orographic influences.  Therefore, large-scale verti-
cal movements of weather systems in mountainous
areas often produce a complexity of spatial rainfall
patterns.  However, in this study, the semivariogram
investigations give a result which reveals that topog-
raphy with around 47-km length on a plain produces
a spatially correlated rainfall distribution.  It indicates
that  the rainfal l  dis t r ibut ion,  assumed to be
isotropically stationary, and statistically homoge-
neous is reasonable in order to decide the range of
the highly correlated rainfall distribution.

Table 4 The number of paired stations in inter-
vals of distances

Distance Average Distance No. of pairs
in Km L of stations nh

0-3 --- ---
3-6   4.87 5
6-9   7.75 9

9-12 10.32 8
12-15 13.30 8
15-18 16.19 6
18-21 19.58 5
21-24 21.77 3
24-27 25.97 4
27-30 28.17 6
30-33 31.90 2
33-36 34.13 3
36-39 38.05 3
39-42 40.72 3
42-45 43.38 4
45-48 47.13 3
48-51 48.60 3
51-54 53.46 2
54-75 55.30 1

Fig. 3  Semivariogram of storm No. 1
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2. Mean areal Precipitation Estimates of Rainfall
Distributions

Using the spherical semivariogram, the kriging
optimal weights of the 13 stations in Eq. (11) can be
computed after a set of paired stations are uniformly
selected from the study area.  The weights for each
storm obtained by the kriging method are listed in
Table 6.  A comparison is made between the weights
obtained by use of the kriging method and those by
the Thiessen method (Table 3).  The comparison
shows that those yielded by the kriging method for
stations No. 2, 3, 4, 5, 6, and 13 (most of the stations
in the eastern area of the study basin, except for sta-
tion No. 13) are highly different from those by the
Thiessen method.  The difference is due to topo-
graphic effects from the mountainous area, thus cre-
ating a varied rainfall distribution.  However, for

stations No. 1, 7, 8, 9, 10, 11, and 12 (most of the
stations in the western area of the study basin, except
for station 1), the weights by the kriging method are
similar to those by the Thiessen method.  The indica-
tion from these weights is that topographic effects
from the plain area create a more uniform rainfall
distribution.  This reveals that the topographic effects
for the rainfall distribution in the study area should
be investigated with the kriging method to obtain the
estimates of the mean areal precipitation.

With the six sets of optimal weights, the esti-
mates of mean areal precipitation of six storms are
evaluated.  Meanwhile, the standard deviations of the
kriging error of estimation (a square root of Eq. (12))
are calculated.  The estimated mean areal precipita-
tion and standard deviations are listed in Table 7.  For
comparison, the mean areal precipitation estimated
by the Thiessen method is also included in Table 7.

Fig. 4  Semivariogram of storm No. 2

Fig. 5  Semivariogram of storm No. 3

Fig. 6  Semivariogram of storm No. 4

Fig. 7  Semivariogram of storm No. 5
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It is worth noting that differences between these
two methods for the six storms are less than 2.5%.
In addition, all of the differences are less than the
standard deviation of the kriging error of estimation.
With the standard deviation of the kriging error of
estimation, higher standard deviations can be found
for storms No. 1, 2, and 4 than for storms No. 3, 5,
and 6.

These results reveal two factors about the spa-
tial structure of storms No. 1, 2, and 4.  First, the
spatial structures of the storms cannot follow the as-
sumption of the isotropic stationary process due to
their higher estimated variance.  This finding is the
same as the one previously stated under Spatial struc-
tures of rainfall distributions in this paper.  Second,
the higher standard deviations reflect topographic
effects on the rainfall distributions from the moun-
tainous area.

On the other hand, because of lower standard
deviations, storms 3, 5, and 6, represented in Figs. 5,
7, and 8, present good results with the functions of
the spherical semivariograms.  Less variance exists
between the experimental and spherical semi-vario-
grams.  Their lower standard deviations also reveal
topographic effects on the rainfall distributions from
the plain area.

V. CONCLUSION

The spatial structure and mean areal precipita-
tion of rainfall in the Tsen-Wen River basin were in-
vestigated by the kriging method with semi-
variograms.  The correlating range (46.17-km) of the
six storms was found to be very close to the down-
stream length (47-km) of the Tsen-Wen River in its
flood plain.  This reflects that it is possible to use
the semivariograms of the six storms in order to

investigate the impacts of topography on storm rain-
fall distributions in the Tsen-Wen River basin with
the isotropic stationary assumption.

Analysis of the estimates of the mean areal pre-
cipitation indicates that these estimates resulting from
the kriging method and the Thiessen method differ
by less than 2.5%.  Basically, the process of second-
order stationarity for rainfall distributions is statisti-
cally isotropic.  The process is similar to the uniformly
distributed process, which is traditionally applied to
obtain the estimate of the mean areal precipitation
with the Thiessen method.  However, a detailed ex-
amination of the rainfall distributions with the kriging
method in the study area reveals that impacts of the
topography on the rainfall distributions exist, which
cannot be found with the Thiessen method.

It is worth noting that the smaller the standard
deviation of the estimated error, as shown in this
study, the more appropriate it is to use the assump-
tion of the statistically isotropic and stationary

Fig. 8  Semivariogram of storm No. 6

Table 5 The spherical semivariograms of six
storms

Storm Spherical Semivariogram
No.

No.1

   

γ =
2.2439[1.5( h

41
) – 0.5( h

41
)3] , h ≤ 41

2.2439 h > 41

No.2

   

γ =
15.7562[1.5( h

44
) – 0.5( h

44
)3] , h ≤ 44

15.7562 h > 44

No.3

   

γ =
1.1147[1.5( h

45
) – 0.5( h

45
)3] , h ≤ 45

1.1147 h > 45

No.4

   

γ =
11.309[1.5( h

40
) – 0.5( h

40
)3] , h ≤ 40

11.309 h > 40

No.5

   

γ =
0.2018[1.5( h

45
) – 0.5( h

45
)3] , h ≤ 45

0.2018 h > 45

No.6

   

γ =
0.6963[1.5( h

52
) – 0.5( h

52
)3] , h ≤ 52

0.6963 h > 52
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processes for investigating the storm structures.  This
is a very important result for rainfall models using
the kriging method on an island that has been ignored
in the past.  From the study, it can be generally agreed
that the kriging method used with semivariograms is
possible for the investigation of the spatial structure
of rainfall distribution and the estimation of mean
areal precipitation on this oceanic island.
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NOMENCLATURE

a the range

Co nugget effect
Co+C sill
E[Z(u1) Z(u2)] covariance function of rainfall

distribution betweem u1 and u2

|h| separation distance of paired sta-
tions

m mean areal precipitation
nh number of paired stations within

each interval defined by h1 and h2

S0 mean areal precipitation over
some area of interest

Z(ui) measured rainfall at observation
points ui

  Z S O
* best linear unbiased estimate of

the true unknown value, ZSO

γ(h) experimental semivariogram of
rainfall distributions Z(ui) and is
a function of h only or spherical
semivariogram

   γ( h ) estimated semivariogram of rain-
fall distributions from discrete
data observed at the stations

λ I optimal weight at location ui

Table 6  List of optimal weights of the six storms obtained by the kriging method

Station No. No.1 No.2 No.3 No.4 No.5 No.6

1 0.0865 0.0880 0.0880 0.0860 0.0880 0.0885
2 0.1179 0.1175 0.1175 0.1178 0.1175 0.1182
3 0.0512 0.0510 0.0513 0.0513 0.0513 0.0520
4 0.0791 0.0793 0.0794 0.0792 0.0794 0.0803
5 0.1323 0.1326 0.1326 0.1321 0.1326 0.1325
6 0.0519 0.0497 0.0494 0.0529 0.0494 0.0493
7 0.0585 0.0576 0.0575 0.0590 0.0575 0.0594
8 0.0517 0.0520 0.0515 0.0513 0.0515 0.0504
9 0.0772 0.0788 0.0791 0.0767 0.0791 0.0775

10 0.0955 0.0955 0.0957 0.0957 0.0957 0.0976
11 0.0394 0.0399 0.0406 0.0396 0.0406 0.0408
12 0.0697 0.0688 0.0682 0.0696 0.0682 0.0650
13 0.0891 0.4243 0.0893 0.0887 0.0893 0.0886

Sum 1.0000 1.0000 1.0001 0.9999 1.0001 1.0001

Table 7 Mean areal precipitation (MAP) estimates obtained by both the kriging and the Thiessen meth-
ods and their standard deviations

Storm No. MAP estimate, Z* Comparison of MAP Standard
Deviation

Kriging Z1
* Thiessen Z2

* Z1
*−Z2

* (Z1
*−Z2

*)/(Z2
*) of Estimator

*100 Error

1 28.33 28.08 0.25 0.88 1.16
2 56.35 55.23 1.12 2.03 2.97
3 28.33 28.69 -0.36 -1.25 0.78
4 41.80 42.31 -0.51 -1.21 2.64
5 19.20 19.65 -0.45 -2.29 0.33
6 13.50 13.60 -0.10 -0.74 0.57
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µ Lagrangian multiplier
σ2 variance of rainfall distribution
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