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The PSD of soil is one of the fundamental soil physical proper-
ties. Because PSDs can be measured relatively easily and quick-

ly, they have been widely regarded as the basis for estimating the 
hydraulic properties of soil, such as the water retention curve and 
saturated as well as unsaturated hydraulic conductivities (Gupta 
and Larson, 1979a,b; Arya and Paris, 1981; Arya et al., 1999; 
Hwang and Powers, 2003). A conventional particle size analysis 
involves the measurement of the mass fractions of clay, silt, and 
sand and the use of these fractions to fi nd the textural class using a 
textural diagram, commonly in the form of a textural triangle (Gee 
and Bauder, 1986). A more complete description of a texture is ob-
tained by defi ning a PSD function. Generally, PSDs are reported 
as cumulative distributions, and diff erent functions have been pro-
posed to fi t experimental data. Several studies suggest that a PSD 
in soil shows an approximately lognormal distribution (Shirazi and 
Boersma, 1984; Campbell, 1985; Buchan, 1989). Buchan (1989) 
studied the applicability of lognormal models for PSDs and found 
that only half of the soils determined by the USDA textural trian-
gle could be suitably described with the lognormal models. Buchan 
(1989) also investigated the eff ects of the number of particle size 
fractions that were measured on the shape of the cumulative mass 
fraction (CMF). Th e more complex the CMF was, the greater was 

the number of required model parameters. Buchan et al. (1993) 
compared fi ve diff erent lognormal models for experimental soil 
PSDs. All fi ve models accounted for >90% of the variance in the 
PSD of most of the soils examined.

Hwang et al. (2002) evaluated seven parametric models 
(fi ve lognormal models, the Gompertz model, and the Fredlund 
model) to fi nd out which model gave a better fi t for the PSD. 
Th ese fi ve lognormal models were previously studied by Buchan 
et al. (1993). Th e number of parameters for each model was from 
one to four. Th ey concluded that the model with more param-
eters obtained a superior performance.

Th ese researchers were concerned about model performance 
and accuracy. A general conclusion is that these models require 
more parameters to be accurate. In some cases, time and labor con-
straints may limit measurements to only the percentage of sand, 
silt, and clay (Skaggs et al., 2001). Skaggs et al. (2001) devised a 
method for estimating the soil PSD when only a few particle sizes 
are available, using a general logistic model. Th ey presented a simple 
method in which the distribution was estimated from only the clay, 
silt, and fi ne sand mass fractions. Th is method was easy to use and 
the estimated PSD agreed reasonably well with the measured data.

Diff erent from the above conventional approaches where 
PSD is described by an empirical model, the gray model that is free 
of a fi xed model shape provides another aspect for PSD predic-
tions. Th e gray system theory, originally proposed by Deng (1989), 
focuses on model uncertainty and information insuffi  ciency in 
analyzing and understanding systems via research on conditional 
analysis, forecasting, and decision making (Guo et al., 2005). Th e 
gray system treats each variable as a gray quantity that changes 
within a given range. It diff ers from the deterministic model in 
that the gray model requires only a small amount of already known 
data to forecast future data. It avoids the inherent defects of the 
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Evaluation of the Gray Model GM(1,1) 
Applied to Soil Particle Distribution

Particle size distribution (PSD) is a fundamental soil physical property. Th e conventional 
approaches for representing PSD use empirical models with two to four parameters. We 
developed an alternative way to predict PSD that diff ers from conventional approaches by using 
the gray model GM(1,1), which does not depend on the model shape as empirical approaches do. 
Th e performance of GM(1,1) was compared with Skaggs model by using four statistical criteria. 
From nine textures of soil samples in our study, the results reveal that the GM(1,1) is superior 
for making PSD predictions. Th e results show that for the overall textures, the GM(1,1) model 
makes better predictions than the Skaggs model except for sand. Th erefore, the performance of 
the GM(1,1) is fairly reliable and effi  cient and is not aff ected by soil textures in general.

Abbreviations: AAE, accumulative absolute error; AGO, accumulated generating operator; CMF, 
cumulative mass fraction; Cc, curvature coeffi  cient; Cu, uniformity coeffi  cient; GM, gray model; MAPE, 
mean absolute percentage error; PSD, particle size distribution.
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conventional, large-sample, statistical method to estimate the be-
havior of a system with insuffi  cient information (Guo, 2004).

Th e general gray model GM(N,H) uses an Nth order diff erential 
equation with H variables and is used to predict random and discrete 
data. When the fi rst-order diff erential equation (N = 1) with one vari-
able (H = 1) is specifi ed, the gray model GM(1,1) is established. Th e 
gray model GM(1,1) has been successfully applied to various fi elds 
by the following researchers. Yu et al. (2001) applied the gray model 
to enhance rainfall and runoff  relationships and to forecast runoff  us-
ing a small amount of historical data. Tseng et al. (2001) proved that 
the GM(1,1) is insuffi  cient for forecasting time series with seasonality 
and should be deseasonalized fi rst before building a GM(1,1). Hsu 
(2003) applied the gray model to the global integrated circuit indus-
try and concluded that the gray model is better suited to short-term 
predictions than mid- and long-term predictions. Mao and Chirwa 
(2006) used the GM(1,1) to estimate vehicular fatality risks. Th ey 
applied the GM(1,1) to the United Kingdom and United States ve-
hicular fatality data sets and showed that the GM(1,1) is a feasible, 
reliable, and highly effi  cient prediction method. Even though the 
GM(1,1) has been successfully applied to diff erent fi elds, we did not 
fi nd any related studies in soil physics.

In this study, we investigated the use of the GM(1,1) model 
as an alternative tool to conventional models for predicting PSD. 
Th is model was used to predict the PSD, using four statistics 
to compare the performance of the Skaggs model and the gray 
model GM(1,1). Th e relationship between the soil properties 
(the uniformity coeffi  cient [Cu] and curvature coeffi  cient [Cc]) 
and the predictive ability of both models were also investigated.

THEORETICAL BACKGROUND
Th e following briefl y describes the theoretical background of both 

the Skaggs model (Skaggs et al., 2001) and the GM(1,1) model.

Skaggs Model 
Skaggs et al. (2001) used the empirical model to describe the cu-

mulative mass fraction of a PSD as
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where R = (r − r0)/r0 with r ≥ r0 > 0, P(r) is the mass fraction of the soil 
particles with radii less than r, r0 is the lower bound for the radii used in 
this model, and c and u are the model parameters. Equation [1] was eval-
uated using 125 soil samples and the following comments were made 
by Skaggs et al. (2001): (i) the model describes the distribution only 
for r > r0 > 0, and the value of the distribution at r0 must be specifi ed, 
P(r0) > 0; (ii) the model dictates P(r2) > P(r1) for any r2 > r1, which 
may not be consistent with an exceptionally poorly graded soil; and (iii) 
the model predicts P → 1 as r → ∞, meaning that it cannot be guaranteed 
that P → 1 at the upper limit of the soil material as it should.

Th e two unknown parameters u and c in Eq. [1] can be estimated 
by using the following expressions:
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Th us we can use Eq. [1] to predict a PSD with parameters u and c being 
determined entirely by P(r0), P(r1), and P(r2) as specifi ed in Eq. [2–5].

In Eq. [2], it can be seen that u is real by noting that since v < 0 
and w < 0, then

11u v w v w
-b b-b b= - =   [6]

where u is a positive real number for any real β.

Gray Model GM(1,1)
Th e gray model GM(N,H), which was formulated by Deng (1989), 

uses an Nth order diff erential equation with H variables and is used 
to predict random and discrete data. Gray predicting is applying the 
GM(1,1) to predict a characteristic value of the progressive change of 
a system behavior. Its essence is to consider a stochastic process or a sto-
chastic variable as being gray, then using the GM(1,1) to deal with the 
progressive changes in these data.

Th e variable X(0) is a set of original mass fractions:

( ) ( ) ( ){ }(0) (0) (0) (0)
1 2, , ..., nX P r P r P r=   [7]

where P(0)(ri) is a mass fraction with a particle size ri  , i is an index of particle 
sequence, and n is the total number of sequences. Mao and Chirwa (2006) 
suggested that n must be ≥4 for making predictions more accurate. On the 
basis of the initial sequence X(0), a new sequence X(1) can be set up through 
an accumulated generating operator (AGO) to provide an intermediate se-
quence to build a model and to weaken the variation tendency, i.e.,
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=å  for k = 1, 2, …, n and X(1) is 1 − AGO 

of X(0). Th e fi rst-order diff erential equation of the gray model GM(1,1) 
is then

(1)
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where a and b are parameters. Notice that Eq. [9] is a general diff erential 
equation, so the variable η can be either space or time. According to gray 
theory, the whitening of the gray derivatives for discrete data with a unit 
space interval (Δη = 1) is given by
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Th e variable Z(1)(k), which is the whitening value of X(1)|η=k, is defi ned as
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where Z(1)(k) is an average generating sequence of X(1).
By substituting Eq. [10] and [11] into Eq. [9] and writing 

the equation in a discrete diff erential form, we obtain

( ) ( )(0) (1)X k aZ k b+ =   [12]
and from Eq. [12], it is easy to get
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where a and b are the coeffi  cients to be defi ned. We specify the matrices as
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where Yn is the constant vector; B is the accumulated matrix; and A is 
the coeffi  cient matrix. Matrix A can be determined by solving the fol-
lowing matrix system:
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Substituting A into Eq. [12], the approximation equation becomes
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where (1)P̂ (rk+1) is the predicted value of P(1)(rk+1) at particle radius 
rk+1. Aft er the completion of an inverse AGO on Eq. [16], (0)P̂ (rk+1), 
the predicted value of P(0)(rk+1) at particle radius (rk+1), becomes avail-
able and, therefore,
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Substituting Eq. [16] into Eq. [17], the predictive equation becomes
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Th e gray model described here was applied in developing the PSD pre-
diction model in this study. Measured data from sites located upstream 
of the alluvial fan of the Cho Shui River were used to build a gray model 
and predict the system outputs. Th e measurement data of the CMF of 
the PSD were used in this study as the original series. Both the Skaggs 
and GM(1,1) models were applied to predict the PSD, and their perfor-
mances were evaluated. Finally, the prediction accuracy and the perfor-
mance of these two models were compared in this study.

Particle Size Distribution Estimation 
Using the Skaggs and GM(1,1) Models

Th e Skaggs model requires three 
cumulative mass fractions, P(r0), P(r1), 
and P(r2), with three specifi ed particle 
sizes r0, r1, and r2. Th e GM(1,1) needs 
four sequential cumulative mass frac-
tions, P(ri), P(ri+1), P(ri+2), and P(ri+3), 
to correspond with the already known 
particle sizes ri, ri+1, ri+2, and ri+3. 
Table 1 shows the inputs and outputs 
for both models. A numerical example 
is performed in the Appendix using the 
Skaggs and GM(1,1) models.

COMPARISON OF 
MODEL PERFORMANCE

Four statistical criteria 
were used for the comparison of 
model performance, namely, the 
mean square error (MSE), the 

mean absolute percentage error (MAPE), the accumulative ab-
solute error (AAE), and the coeffi  cient of determination (R2).

1. Th e MSE is defi ned as
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where (0)P̂ (rk) denotes the predicted value of mass fraction 
P(0)(rk) at particle sequence index k, and n is the total number 
of predictions.

2. Th e MAPE is defi ned as
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3. Th e AAE is defi ned as
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4. Th e R2 is defi ned as
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It represents the measure of minimal discrepancies between mea-
sured and predicted data. For example, a model with a large R2 
may be more preferable than one with a small R2.

In this study, the results of both the Skaggs and GM(1,1) 
models were, in general, compared with each other using these 
four criteria.

MATERIALS AND METHODS
The Soil Samples

Soil samples were taken from three sampling sites, as shown in 
Fig. 1. Th ey are all located upstream of the alluvial fan of the Cho Shui 
River, a gravel-covered area in central Taiwan. A total of 222 soil sam-

Table 1. Comparisons of model inputs and outputs for the 
Skaggs and GM(1,1) models.

Model Input Output

Skaggs model r0, r1, r2, P(r0), P(r1), P(r2) P(r)

GM(1,1) model P(ri), P(ri+1), P(ri+2), P(ri+3) P(ri+4)

Fig. 1. Soil sample distributions across the study sites.
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ples were taken from the sampling sites, of which 90 were from 30 bore-
holes in Laoping of Citong Village, 50 were from 25 boreholes located 
in Lin-Zhong of Linnei Village, 50 were from 25 boreholes in Wu-Tu of 
Linnei Village, and 32 soil samples were taken randomly from 17 scat-
tered boreholes within the interconnecting areas.

Particle Size Analysis
Th e PSDs of the soil samples were determined using sieve analysis for 

particles >63 μm and the hydrometer analysis for particles <0.075 mm. 
Th e Cu and the Cc were derived from the following formulae:

60

10
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D

D
=   [23]

and
2
30

10 60

Cc
D

D D
=   [24]

where D60, D30, and D10 represent the diameters corresponding to the 
percentage fi ner than 60, 30, and 10%, respectively.

Th e textural composition of the 222 soil samples was determined us-
ing the USDA classifi cation system. Th e range of soil textures covered in 
this study is shown in Fig. 2. Th e 222 soil samples were classifi ed into nine 

soil textures: loamy sand, sandy loam, sandy clay, loam, clay, sandy clay loam, 
sand, silt loam, and silt. Among the nine soil classes, sandy loam (43.24%), 
loamy sand (39.64%), sandy clay loam (6.30%), and sand (4.95%) were 
predominant (as shown in Table 2). To know how Cu and Cc aff ect the 
predictive ability of both models, they were determined for these four pre-
dominant soil classes.

RESULTS AND DISCUSSION
Samples of nine soil textures (shown in Table 2) were used 

to test both the Skaggs and GM(1,1) models. Figures 3a to 3i 
show the prediction results of both models for the diff erent soil 
textures. As can be seen in Fig. 3b, 3e, and 3f, the predicted PSD 
curve of both models were in good agreement with the measured 
data. Th e GM(1,1) shows a performance superior to the Skaggs 
model in Fig. 3c, 3d, 3g, 3h, and 3i, while the Skaggs model 
shows better results than the GM(1,1) in Fig. 3a. Th e reason for 
this is that Eq. [1] of the Skaggs model is a logistic growth curve. 
When the measured PSD data closely follow a logistic type of 
function, the Skaggs model can obtain better results.

Th e performances of both models are presented in Table 3. 
Th e results show that the performance criteria of MSE and R2 for 
the GM(1,1) model are superior to those of the Skaggs model 
except for sand.

According to the criteria MAPE and AAE, both models 
performed fairly well for the soil textures in general. Notice that 
italics represent better performance in Table 3. Th e comparisons 
reveal that, in general, the performance of the GM(1,1) is superi-
or to the Skaggs model. As for the Skaggs model, poor estimates 
are exhibited for silt, as shown in Fig. 3h. Th is result is consistent 
with the conclusion of Skaggs et al. (2001).

Figures 4a to 4i show the predicted vs. measured CMFs of 
both models with their regression lines for the nine soil textures. 
Th e regression lines describe the minimized distance from the 
line to the data points of the individual models. Th e red dotted 
line is the 1:1 line. Th ese fi gures show the relationship of predict-
ed with measured CMFs for both the Skaggs and GM(1,1) mod-
els. Ideally, all the scatter points lying on the 1:1 line means that 
the predicted and measured CMF values are exactly the same. 
Alternatively, for individual regression lines that diverge from 1:1 
line, e.g., Fig. 4c and 4d, one can easily tell that the CMF pre-
dicted by the GM(1,1) model coincides better with the 1:1 line 
than that predicted by the Skaggs model.

Th e interesting results also show that the performance of the 
GM(1,1) model depends less on the soil texture. Th e reason for 

this is that for most logistic type of PSD mod-
els (like the Skaggs model), the PSD curve type 
is fi xed. Once the parameters are obtained, the 
model is set permanently for making all other 
predictions. By contrast, the GM(1,1) model 
calculates its coeffi  cient matrix independently 
for each prediction. Furthermore, there is no 
unique type of empirical model for describing 
the full range of soil textures. Th e results may 
also imply that there is a diff erent characteristic 
between the GM (1,1) and Skaggs models [i.e., 
the Skaggs model is predominated by a logis-
tic type of function, but the GM(1,1) model 
is not].

Table 2. The soil texture classifi cations and their properties.

Soil texture Samples Percentage
Effective 

particle size
Uniformity 
coeffi cient

Curvature 
coeffi cient

no. % mm
Sand 11 4.95 0.0500 ~ 0.4900 1.75 ~ 16.90 0.84 ~ 3.00

Sandy clay 2 0.90 0.0150 86.67 ~ 153.33 1.24 ~ 2.48

Sandy clay loam 14 6.30 0.0020 ~ 0.0320 17.39 ~ 2000.00 0.31 ~ 7.54

Sandy loam 96 43.24 0.0020 ~ 0.0760 3.47 ~ 820.00 0.26 ~ 19.53

Loam 4 1.80 0.0015 ~ 0.0210 80.00 ~ 242.86 0.23 ~ 1.57

Clay 2 0.90 0.0057 ~ 0.0160 175.00 ~ 315.79 0.09 ~ 0.25

Loamy sand 88 39.64 0.0063 ~ 0.1000 6.00 ~ 181.82 0.14 ~ 16.53

Silt 3 1.35 0.0120 ~ 0.0150 0.033 ~ 2.530 0.459 ~ 0.990

Silt loam 2 0.90 0.0174 ~ 0.0197 5.00 ~ 15.98 0.240 ~ 0.570

Total samples 222

Fig. 2. Textural composition of the soil data set.
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Figure 5a presents the AAE of the Skaggs and GM(1,1) models 
for sand. Nine out of 11 soil samples show that the AAE of the Skaggs 
model is less than that of the GM(1,1) model, which means that the 
Skaggs model can more accurately predict sand estimates than the 
GM(1,1) model. Figures 5b to 5d show the AAE of the Skaggs and 
GM(1,1) models for sandy clay loam, sandy loam, and loamy sand. 
Th e GM (1,1) model has an AAE value less than the Skaggs model 
and, therefore, is better for predicting these soil textures.

Th e relationship between the Cu and AAE values of both 
models is presented in Fig. 5a to 5d. As can be seen, the AAE 
values for both the Skaggs and GM(1,1) models decrease when 
Cu increases. On the other hand, the relationship between the 
Cc and AAE values for both the Skaggs and GM(1,1) models 
shows a lot of fl uctuations and the same trend, as shown in Fig. 
6a to 6d.

CONCLUSIONS
From samples representing nine soil textures, a successful ap-

plication of the gray model GM(1,1) to predict the PSD shows 
that this new prediction method is feasible, reliable, and highly 
effi  cient. It does not make assumptions about the shape of the 
curve, but deals directly with the original data. On the other 
hand, the Skaggs model needs to specify three bounds of radii 
(i.e., r0, r1, and r2) and their related mass fractions. Th e bounds 
of radii should cover the range of the PSD in sequence from the 
smallest to the largest size to cover all possible sizes.

Th e Skaggs model itself is like an interpolation function. Th e 
GM(1,1), however, uses four successive continuous data chosen ar-
bitrarily from the sequence of the original mass fractions to predict 
the following sequences. Th e model is not related to the particle sizes, 
which makes it easier to use the GM(1,1) than the Skaggs model.

Fig. 3. Comparisons of the model predictions for (a) sand, (b) sandy clay, (c) sandy clay loam, (d) sandy loam, (e) loam, (f) clay, (g) loamy sand, 
(h) silt, and (i) silt loam soils.
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Fig. 3. (continued.) Comparisons of the model 
predictions for (a) sand, (b) sandy clay, (c) sandy 
clay loam, (d) sandy loam, (e) loam, (f) clay, (g) 
loamy sand, (h) silt, and (i) silt loam soils.



SSSAJ: Volume 73: Number 6  •  November –December 2009 1781 

Th e performance of both the Skaggs and GM(1,1) models 
were evaluated using four diff erent criteria (i.e., MSE, MAPE, 
AAE, and R2). Overall, the results show that the prediction accu-
racy for the PSD of the GM(1,1) is better than the Skaggs model 
for most soil textures. Th e results also show that when the soil tex-
ture is silt, the Skaggs model yields a large error, which is consistent 
with the conclusion of Skaggs et al. (2001). On the contrary, the 
performance of the GM(1,1) is quite accurate and is not aff ected 
by the soil texture in general.

APPENDIX: CALCULATION EXAMPLE
Th e following example calculation was performed using both the 

Skaggs model and the GM(1,1) model based on the theoretical back-
ground above.

Prediction Using the Skaggs Model
To use Skaggs model, three radii of soil particles have to be specied 

(i.e., r0, r1, and r2). As shown in Table A1, in this study we used r0 = 
0.003 mm, r1 = 0.074 mm (the particle size of a no. 200 sieve), and r2 = 
2.0 mm (the boundary between sand and gravel). Th e related mass frac-
tions can be specifi ed as P(r0) = 0.034, P(r1) = 0.215, and P(r2) = 0.813. 

Table 3. Comparisons of the Skaggs and GM(1,1) models using the mean square error (MSE), mean absolute percentage error 
(MAPE), accumulative absolute error (AAE), and coeffi cient of determination (R2). Italics represent better performance.

Soil texture
No. of 

samples
MSE MAPE AAE R2

Skaggs GM(1,1) Skaggs GM(1,1) Skaggs GM(1,1) Skaggs GM(1,1)

——— mm2 ——— ———— mm ————
Sand 11 0.0002 0.0065 0.3949 0.3303 −0.0605 −0.2446 0.999 0.962

Sandy clay 2 0.0005 0.0003 0.0943 0.1211 −0.0633 −0.0099 0.996 0.996

Sandy clay loam 14 0.0224 0.0148 0.2022 0.2207 0.6139 −0.4297 0.868 0.910

Sandy loam 96 0.0156 0.0065 0.1732 0.2780 0.6739 −0.3262 0.909 0.959

Loam 4 0.0015 0.0003 0.1561 0.0866 −0.1851 3.00 × 10−5 0.989 0.996

Clay 2 0.0023 0.0008 0.1593 0.1254 −0.0445 −0.0855 0.978 0.991

Loamy sand 88 0.0012 0.0006 0.0804 0.1201 0.1487 0.9656 0.992 0.993

Silt 3 0.0768 0.0087 1.0261 0.2229 −1.8585 −0.5747 0.670 0.986
Silt loam 2 0.0020 0.0014 0.1366 0.0908 0.0043 −0.0151 0.948 0.948

Fig. 4. The predicted cumulative mass fraction (CMF) vs. measured CMF for (a) sand, (b) sandy clay, (c) sandy clay loam, (d) sandy loam, (e) loam, 
(f) clay, (g) loamy sand, (h) silt, and (i) silt loam soils; the red dotted line lies on a 45° angle.
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By substituting these three radii and their related mass fractions into Eq. 
[4], [3], and [2] sequentially, we obtain

( ) ( )[ ] ( ) ( )[ ]1 0 2 0

1 1
0.30

ln ln 0.074 0.003 2.0 0.003
a = = = -

- - - -r r r r

1 0

0

0.074 0.003
 ln 0.3ln 0.949

0.003

r r

r

æ ö- -æ öb = a = - = -ç ÷ ç ÷
è øè ø

( )
( )

( )
( )

1

0

1 1 1 0.215 1
ln ln 2.052

1 0.034 11 1

P r
v

P r

ì ü-é ù é ù-ï ïë û= = = -í ý ê ú--é ùï ï ë ûë ûî þ

and

( )
( )

( )
( )

2

0

1 1 1 0.813 1
ln ln 4.816

1 0.034 11 1

P r
w

P r

ì ü-é ù é ù-ï ïë û= = = -í ý ê ú--é ùï ï ë ûë ûî þ

Th e model parameters u and c can be obtained as follows:

2.052
ln 0.3ln 0.256

4.816

v
c

w

-æ ö æ ö= a = - =ç ÷ ç ÷-è ø è ø

1 0.949 0.9491 2.052 4.816 0.913u v w
+ --b b= - = - - =

By substituting parameters u and c into Eq. [1], the prediction 
equation becomes

( )
( ){ } ( )

( ) ( ){ }

0

0.256

1

1 1 1 exp

1
        

1 1 0.034 1 exp 0.913 0.003 1

=
+ -é ùë û

=
+ - - -é ù é ùë û ë û

c
P r

P r -uR

r

Fig. 4. (continued.)The predicted cumulative mass 
fraction (CMF) vs. measured CMF for (a) sand, (b) 
sandy clay, (c) sandy clay loam, (d) sandy loam, (e) 
loam, (f) clay, (g) loamy sand, (h) silt, and (i) silt 
loam soils; the red dotted line lies on a 45° angle.
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When particle size r = 0.250, the related mass fraction is predicted as

( )[ ] ( )[ ]{ }0.256

1
(0.25) 0.372

1 1 0.034 1 exp 0.913 0.250 0.003 1
= =

+ - - -
P

Th e remaining mass fractions P(r1) can be predicted accordingly. Th e 
prediction results are shown in Table A1 and Fig. A1.

Prediction Using the GM(1,1) Model
For the GM(1,1) model, four particle sizes are required. In this study, we 
chose the fi rst four particle sizes r (mm) in Table A1 (i.e., ri = 9.53 mm, 
ri+2 = 4.76 mm, ri+3 = 2.0 mm, and ri+4 = 0.84 mm) as the original 
particle size sequence. Th e resulting CMF sequence is

( ) ( ) ( ){ } { }(0) (0) (0) (0)
1 2 4, , ..., 1.0,  0.959,  0.813,  0.683X P r P r P r= =

From the original CMF sequence, the procedures used for the GM(1,1) 
prediction are

Step 1. On the basis of X(0), the AGO sequence X(1) is

{ }
{ }

(1) 1,  1 0.959,  1 0.959 0.813,  1 0.959 0.813 0.683

1,  1.959,  2.772,  3.455

X = + + + + + +

=

Step 2. Th e average generating sequence is

{ }

(1) 1 1.959 1.959 2.772 2.772 3.455
,  ,  

2 2 2

1.479,  2.3655,  3.1135

Z
+ + +ì ü= í ý

î þ
=

Step 3. Th e gray parameters a and b are determined by solving Eq. [13]:

Fig. 5. Relationship between the uniformity coeffi cient and the accumulative absolute error of the model predictions for (a) sand, (b) sandy clay 
loam, (c) sandy loam, and (d) loamy sand soils.



1784 SSSAJ: Volume 73: Number 6  •  November–December 2009

( )
( )

( )

( )
( )

( )

(0) (1)
2

(0) (1)
3

(0) (1)

2 1

3 1

n

P r Z

aP r Z

b

P r Z n n

é ù é ù-
ê ú ê ú- é ùê ú ê ú= ê úê ú ê ú ë ûê ú ê ú

-ê ú ê úë û ë û

that is,
0.959 1.479 1

0.813 2.365 1

0.683 3.1135 1

a

b

-é ù é ù
é ùê ú ê ú= - ê úê ú ê ú ë ûê ú ê ú-ë û ë û

and therefore,

ú
û

ù
ê
ë

é
=ú

û

ù
ê
ë

é
2097.1

1687.0

b

a

Step 4. Based on Eq. [18], the prediction equation becomes

( ) ( ) ( ) ( )(0) (0)
1 1

ˆ 1 exp expk
bP r P r a ak
a+

é ù= - - -é ùë ûê úë û

When k = 5, the predicted value for (0)P̂ (r5) is

( ) ( ) ( )[ ] ( )[ ]( 0 ) ( 0 )

5 1

1.2097
ˆ 1 exp 0.1687 exp 0.1687 5 0.577

0.1687
= - - - =é ù
ê úë û

P r P r

Step 5. Since (0)P̂ (r5) has been obtained, the next predicted 
variable [i.e., (0)P̂ (r6)] can be estimated sequentially by using 
the new sequence:

( ) ( ) ( ){ } { }(0) (0) (0) (0)
2 3 5, , ..., 0.959,  0.813,  0.683,0.577X P r P r P r= =

Step 6. Steps 1 to 5 are repeated to determine the remaining 
predicted variables.

Th e results predicted by the GM(1,1) model are presented in Table 
A1 and Fig. A1.

Fig. 6. Relationship between the curvature coeffi cient and the accumulative absolute error of the model predictions for (a) sand, (b) sandy clay 
loam, (c) sandy loam, and (d) loamy sand soils.
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Fig. A1. Comparison of predicted results using the Skaggs and 
GM(1,1) models.

Table A1. Examples of particle size distribution predicted using the Skaggs model and GM(1,1) models. 

Data
Cumulative mass fraction

9.530 mm 4.760 mm 2.000 mm † 0.840 mm 0.250 mm 0.149 mm 0.074 mm 0.03 mm 0.014 mm 0.011 mm 0.008 mm 0.003 mm 0.001 mm

Measured data 1.000‡ 0.959‡ 0.813‡§ 0.683‡ 0.527 0.449 0.215§ 0.168 0.129 0.082 0.056 0.034§ 0.000
Skaggs 1.000 0.933 0.813 0.622 0.372 0.292 0.215 0.143 0.112 0.102 0.091 0.034 0.016
GM(1,1) 1.000 0.959 0.813 0.683 0.577 0.436 0.353 0.183 0.100 0.081 0.062 0.035 0.023
†The italic numbers represent the particle size used for Skaggs model predictions.
‡ Used for the GM(1,1) model predictions.
§ Used for the Skaggs model predictions.


