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[1] Data from tomographic surveys make an inverse problem better posed in comparison
to the data from a single excitation source. A tomographic survey provides different
coverages and perspectives of subsurface heterogeneity: nonfully redundant information
of the subsurface. Fusion of these pieces of information expands and enhances the
capability of a conventional survey, provides cross validation of inverse solutions, and
constrains inherently ill posed field-scale inverse problems. Basin-scale tomography
requires energy sources of great strengths. Spatially and temporally varying natural stimuli
are ideal energy sources for this purpose. In this study, we explore the possibility of
using river stage variations for basin-scale subsurface tomographic surveys. Specifically,
we use numerical models to simulate groundwater level changes in response to temporal
and spatial variations of the river stage in a hypothetical groundwater basin. We then
exploit the relation between temporal and spatial variations of well hydrographs and river
stage to image subsurface heterogeneity of the basin. Results of the numerical exercises
are encouraging and provide insights into the proposed river stage tomography. Using
naturally recurrent stimuli such as river stage variations for characterizing groundwater
basins could be the future of geohydrology. However, it calls for implementation of sensor
networks that provide long-term and spatially distributed monitoring of excitation as well
as response signals on the land surface and in the subsurface.
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1. Introduction

[2] Managing groundwater resources in a groundwater
basin requires information about hydraulic property distri-
butions, which controls water and contaminant movement
and distributions in the basin. With this information, nu-
merical groundwater models are used for simulation, pre-
diction, and scenario analysis, and facilitate long-term
management of water resources.
[3] Hydraulic properties of aquifers in a basin (aquifers of

tens and hundreds of kilometers) are generally obtained
from groundwater model calibration efforts (i.e., inverse
modeling of a groundwater flow model with distributed
parameters). Many basin-scale model calibrations have not
attempted to build detailed heterogeneity into flow models
because of the prohibitive cost of detailed sampling over
large areas and the computational limits on calibrating
multiscale heterogeneity in the model. Regional geologic
or hydrologic units are often treated as zones, assumed to be

homogeneous with a single effective parameter value [e.g.,
Barlebo et al., 2004; Thorne et al., 2006].
[4] In these groundwater model calibration efforts, the

parameter distribution is often estimated from a steady state
or predevelopment head distribution [e.g., Yeh and Mock,
1996; Thorne et al., 2006]. Heterogeneous transmissivity
fields are estimated by manually adjusting parameter values
in model cells or zones to match simulated and observed
hydraulic heads. More advanced approaches use automated
calibration algorithms (e.g., PEST [Doherty, 2007] or
UCODE [Poeter et al., 2005]) to minimize the residual
between observed and simulated heads [e.g., Barlebo et al.,
2004]. Steady state calibrations are limited to estimating
transmissivity, and few regional studies attempt to calibrate
groundwater flow models using transient head measure-
ments because of the large increase in complexity and
computational effort.
[5] Calibrating a basin-scale groundwater model is solv-

ing an ill posed problem and results are nonunique because
of difficulties in collecting the necessary and sufficient
information which makes an inverse problem well posed
[Yeh et al., 2007]. For example, sources of excitations in
aquifers are rarely fully characterized and frequently only
sparse temporal and spatial responses of aquifers are avail-
able. As a result, inverse modeling efforts yield aquifer
characterization with great uncertainty. Because of this
uncertainty, many misleading predictive models of ground-
water flow and contaminant migration have been produced.
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The ability to predict flow and solute transport in aquifers
have therefore been seriously questioned [Konikow and
Bredehoeft, 1992; Bredehoeft, 2003].
[6] To improve our ability to characterize aquifers, many

researchers have recently developed a new aquifer charac-
terization approach: hydraulic tomographic surveys [e.g.,
Gottlieb and Dietrich, 1995; Vasco et al., 2000; Yeh and
Liu, 2000; Bohling et al., 2002; Brauchler et al., 2003; Zhu
and Yeh, 2005, 2006]. Hydraulic tomography involves
collecting groundwater responses at many locations of an
aquifer induced by a sequence of pumping tests at different
locations, and then calibrating a heterogeneous groundwater
flow model using these observed responses from all the
tests. These multiple sets of aquifer tests and corresponding
responses provide many constraints for the calibration, since
different tests bring forth new information, which validates
and/or improves the calibration on the basis of previous
tests. As a result, the estimated hydraulic property fields
from the calibration become more detailed and less uncer-
tain than those estimated from a single set of data collected
from traditional characterization methods.
[7] Hydraulic tomography has been applied successively

to small-scale synthetic aquifers [Yeh and Liu, 2000; Zhu
and Yeh, 2005, 2006; Hao et al., 2008], laboratory sand-
boxes [Liu et al., 2002, 2007; Illman et al., 2007], plot-scale
fields [Vesselinov et al., 2001; Bohling et al., 2007; Straface
et al., 2007; Li et al., 2007a] and a fractured granite field
site [Illman et al., 2009]. In these small-scale studies it is
possible to stress the entire domain with each pumping well,
providing new information throughout the domain from
each pumping event.
[8] Unlike the previous applications of hydraulic tomog-

raphy, it is not possible to pump a single well to produce a
response throughout the basin-scale aquifer unless the
pumping rate and test length are unreasonably large. At
the basin scale, Kuhlman et al. [2008] reformulated hydrau-
lic tomography as an interference problem. The head
distribution due to multiple simultaneous pumping wells
is observed using a monitoring well network as might be
found in a municipal water supply or remedial well field (as
proposed by Yeh and Lee [2007]). Rather than pump
successively from individual wells, Kuhlman et al. [2008]
cycled through sets of pumping wells. In this way, the
regional aquifer is repeatedly stressed to the fullest possible
extent using existing wells.
[9] An attractive alternative to multiple simultaneous

pumping wells for inducing large hydraulic stresses as
simulated by Kuhlman et al. [2008] is natural sources of
either hydraulic or mechanical stresses that can induce
groundwater level responses over the entire basin [see Yeh
et al., 2008]. Aquifers are known to respond to such
mechanical stresses (see Kümpel et al. [1999] or textbook
by Domenico and Schwartz [1997] for a review) because of
naturally occurring atmospheric pressure variations at the
surface, periodic solid earth tides, ocean tides and even
precipitation at the surface [e.g., Sophocleous et al., 2006;
Desmarais and Rojstaczer, 2002]. Likewise, recharge from
and discharge to surface water bodies such as rivers and
lakes induce hydraulic gradients over a multitude of spatial
scales ranging from local to regional flow systems (see
Winter [1999] for an excellent overview).

[10] Numerous studies have been conducted in the past to
estimate the hydrogeologic properties of aquifers by inter-
preting the aquifer response due to naturally occurring me-
chanical stresses [DeWiest, 1965; Rojstaczer, 1988; Rojstaczer
and Riley, 1990; Hsieh et al., 1988; Davis et al., 2000; Li et
al., 2007b] as well as hydraulic stresses due to river stage
variations [Duffy et al., 1978;Nevulis et al., 1989; Sophocleous,
1991; Barlow et al., 2000; Vazquez-Sune et al., 2007]. A
comprehensive review of interactions between surface water
and groundwater systems (SWGW) at various spatial and
temporal scales has been presented by Sophocleous [2002].
Past field studies and data analyses have relied on analytical
solutions for homogeneous aquifers [e.g., Moench and
Barlow [2000]; Kollet and Zlotnik, 2003].
[11] Very few studies have investigated effects of aquifer

heterogeneity on the groundwater fluctuation induced by
river stage variations in a groundwater basin. Sophocleous
[1991] hypothesized that groundwater level rises in the
Great Bend Prairie aquifer of Kansas are not only caused
by water percolating downward through the vadose zone
but also by pressure pulses from stream flooding that
propagate in a translatory motion through numerous high-
transmissivity and high-hydraulic diffusivity buried chan-
nels (paleochannels). These paleochannels cross the Great
Bend Prairie aquifer in an approximately west to east
direction. Because of the widespread relatively shallow
and thin clay layers throughout the Great Bend Prairie,
the aquifer behaves essentially as a confined aquifer with
low storativity but high transmissivity, thus allowing these
pressure pulses to travel rapidly across long distances from
the stream source.
[12] In order to validate his hypothesis, two transects of

wells (spaced 6 miles apart) oriented north-south and east-
west, crossing and alongside some of the paleochannels in
the area, were instrumented with water level recording
devices. The north-south transect includes eight wells
spanning over 68 km (42 miles) of the Great Bend Prairie
from Great Bend to Pratt, Kansas. The west-east transect
also includes eight wells spanning over 58 km (36 miles)
from Larned, Kansas, to east of the Quivira National
Wildlife Refuge. Streamflow data from all area streams
(including the Arkansas River, Pawnee River, and Rattle-
snake Creek) were collected from available stream gauging
stations. Precipitation, barometric pressure, and other
weather and groundwater recharge–related data were also
obtained from existing recharge assessment sites in the area.
[13] These field data sets reveal that observation wells

located in between the inferred paleochannels show little or
no fluctuations and no correlation with streamflow, even for
the wells at short distances (e.g., 1.5 miles) from the river.
On the other hand, wells located along the paleochannels at
distances ranging from 800 ft to 37 miles away from the
river exhibit high water level fluctuations and show good
correlation with the streamflow of the stream connected to
the observation site by means of the paleochannels. These
field data sets also discounted the possibility that the
observed groundwater level fluctuations are caused exclu-
sively by significant local differences in precipitation.
[14] In addition, Sophocleous [1991] conducted stream-

aquifer numerical simulations and demonstrated that the
larger the hydraulic diffusivity of the aquifer, the larger
the extent of pressure pulse propagation and the faster the
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propagation speed. For heterogeneous aquifer systems,
zones with identical hydraulic diffusivity values will not
result in identical pulse propagation unless they also share
the same transmissivity or storativity ratio. The conceptual
simulation results indicate that long-distance propagation of
stream flood pulses (of the order of tens of kilometers)
through the Great Bend aquifer is indeed feasible with
plausible stream and aquifer parameters. Moreover, results
of the sensitivity analysis indicate that the lower the stream
stage, the less its impact on the aquifer. The stream stage is
highly sensitive to the Manning coefficient and channel
slope. More recently, Rotting et al. [2006] conducted stream
stage flooding tests in a heterogeneous aquifer-river system
and estimated transmissivities, storativities and leakage
parameters by coupling stream stage measurements with
pumping tests.
[15] Linking the concept of hydraulic tomography with the

long-recognized relation between river stages and ground-
water level as well as evidence of heterogeneity on flood
pulse propagation in aquifers as observed by Sophocleous
[1991], Yeh et al. [2004] and Xiang and Yeh [2005] proposed
and explored the possibility of the river stage tomography.
That is, as the river stage perturbation (e.g., a flood wave or
discharge fromadam)migrates to one location along the river, it
produces a pressure head response in various parts of the
aquifer. These responses in essence constitute a snapshot of
the heterogeneity of the aquifer with a hydraulic excitation
source at the location of the disturbance. As the flood wave
continuously migrates downstream and aquifer responses at
various times are collected, we thereby have a large number of
snapshots of the aquifer heterogeneity with sources at different
locations. These snapshots provide us with the view of the
aquifer heterogeneity at different angles and perspectives.
Synthesizing these different views should lead to a better
characterization of the aquifer heterogeneity than using one
snapshot.
[16] In this study, we develop a numerical model to

simulate temporal and spatial responses of the aquifer
caused by migration of a streamflow perturbation along a
river in a synthetic groundwater basin. A stochastic inverse
methodology is also adopted that exploits these responses to
estimate aquifer properties in the basin. We then conduct
numerical experiments to test the river stage tomography
concept for delineation of aquifer heterogeneity. Toward the
end, we discuss possibilities and difficulties associated with
the concept when it is applied to real world scenarios.

2. Flow Model for the SWGW System

[17] Generally, stream and groundwater processes as well
as their interactions are complex at various scales: the finer
the scale is, the more complex these processes are. To
include all processes and their complexities at various scales
may be possible but is beyond the scope of this study. The
objective of the study here is exploration of the concept of
basin-scale aquifer characterization using naturally recurrent
events as a basin-scale hydraulic tomographic survey.
Specifically, the focus of the study is the basin-wide
groundwater level responses to river stage fluctuations in
the presence of basin-scale aquifer heterogeneity. Different
from simulation conducted by Sophocleous [1991], we aim
to demonstrate here the possibility of using stream stage
variations to delineate the heterogeneity of groundwater

basins. To accomplish the objective without loss of realism,
a simplified river-groundwater basin system developed by
Glover [1988], similar to the USGS model [Trescott et al.,
1976] used by Sophocleous [1991], is considered in this
study, which consists of a two-dimensional, heterogeneous
semiconfined aquifer and a stream. The stream is simplified
as a line source and serves to define the temporal and spatial
excitation to the basin aquifer. Groundwater flow in the
aquifer is represented by a two-dimensional, depth-averaged
equation:

Sðx; yÞ @fðx; y; tÞ
@t

�r:ðTðx; yÞrfðx; y; tÞÞ ¼ qðx; y; tÞ ð1Þ

where S denotes the storage coefficient, f is the hydraulic
head [L], t is time [T], T represents the transmissivity
[L2/T], and q [L/T] is strength of the line source representing
recharge from the stream. The boundary conditions for the
aquifer are that of prescribed head and flux:

fjG1 ¼ f1ðtÞ and Trf � njG2 ¼ f2ðtÞ ð2Þ

and the initial condition is

fjðx; y; 0Þ ¼ f0ðx; y; 0Þ ð3Þ

In our analysis, streamflow in the river is modeled using the
kinematic equation for a one-dimensional open-channel flow:

@dðl; tÞ
@t

þ @ uðl; tÞdðl; tÞ½ 

@l

¼ qrðl; tÞ ð4Þ

where d(l,t) is the river stage (the depth of the water in the
river); l is taken along the length of the river; qr is the
recharge per unit area from the stream to the aquifer, defined
in terms of the properties of the streambed and the depth in
the stream as

qrðl; tÞ ¼
K

c
dðl; tÞ

Qrðl; tÞ ¼ B

Z lþDl

l

qrdl

ð5Þ

where K [L/T] is the hydraulic conductivity of the streambed
and c [L] is its thickness, B [L] is the width of the stream, and
Qr [L

3/T] is the net rate of recharge over a segment of length
Dl.
[18] Note that in this idealized representation of the

recharge from the stream as a line source, the recharge
depends only on the depth of the stream stage and is
assumed to be gravity driven below the stream. This
assumption follows from the observation that, for streams
that have a large width to depth ratio, the bank storage
effects are neglected and the leakage predominantly perco-
lates vertically downward into the aquifer [Chen and Chen,
2003]. Additionally, the width of the river is much smaller
than the scale of heterogeneity considered in this study so
that the local-scale interactions between the river and
aquifer may be ignored. Also, storage effects of the
medium between the stream and the aquifer have been
neglected in our SWGW model. This assumption stems
from the findings of numerical simulations by Zlotnik and
Huang [1999] that neglecting storage effects of the vadose
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zone underneath the stream leads to errors that are ex-
tremely small in magnitude and can be considered prac-
tically irrelevant.
[19] The velocity, u, of the river flow is assumed to be

governed by

uðl; tÞ ¼ 1:49

n
S

1
2

0dðl; tÞ
2
3 ð6Þ

where n is the Manning roughness coefficient, d is the river
stage (depth of the river), and S0 denotes the river channel
slope. The river slope and the Manning roughness
coefficient are assumed to be constant along the river
length. The boundary and initial conditions associated with
equation (4) are

djl¼0 ¼ d1ð0; tÞ and djt¼0 ¼ d0ðl; 0Þ ð7Þ

respectively, and d1 (0, t) represents the input hydrograph to
the river at l = 0. This completes the description of the
forward problem for determining head distributions in the
aquifer induced by stream stage variations. The groundwater
flow equation, kinematic equation, boundary conditions and
initial conditions (i.e., equations (1) through equations (7))
are implemented using a finite element approach (VSAFT2,
available at www.hwr.arizona.edu/yeh).

3. Inverse Methodology

[20] In river stage tomography, the unknown parameters
to be estimated are the spatial distributions of T and S values
in the basin-scale aquifer. To conduct this inverse modeling
effort, we use a simultaneous successive linear stochastic
estimator (SimSLE) developed by Xiang et al. [2009]. The
SimSLE is an inverse algorithm based on the sequential
successive linear estimator (SSLE) developed by Zhu and
Yeh [2005, 2006] for sequentially synthesizing the aquifer
head response due to discrete pumping events during a
hydraulic tomography experiment. Instead of incorporat-
ing the aquifer’s hydraulic head responses from discrete
sources sequentially into the estimation as is done in
SSLE, the SimSLE method includes all observed ground-
water level changes due to migration of river disturbances
to different locations simultaneously to estimate T and S of
the aquifer.
[21] In the SimSLE approach, the natural logs of T and S

values are treated as stochastic processes (i.e., lnT = Y + y
with unconditional mean Y and perturbation y and lnS = S +
s, with the unconditional mean S and perturbation s).
Similarly, the hydraulic head is expressed as sum of its
mean and perturbation, i.e., f = H + h. SimSLE then seeks
parameters Tc, Sc and Hc (i.e., the conditional effective
transmissivity, storage and hydraulic head, respectively)
which reflect effects of inclusion of secondary data and
direct measurements of T and S. As a result, the simulated
head field using these Tc and Sc fields honors head measure-
ments at sample locations and describes conditional
‘‘mean’’ responses of the aquifer to the changes in the river
stage following a known input hydrograph and, in turn,
recharges the aquifer. The secondary data we use in this
study are the head measurements f* (x, y, t) observed at
wells in the aquifer at various times. In addition, this
approach implicitly assumes that the river stages along the

river reaches are well characterized in time and space along
with parameters governing flow in the river. More specif-
ically, this information drives the conditioning process for
estimation of the T and S fields.
[22] With given unconditional mean and spatial covari-

ance functions of T and S (i.e., the prior joint probability
density is known and is assumed to be multi-Gaussian here),
the SimSLE starts with cokriging (a stochastic linear esti-
mator) to estimate the conditional expected value of the
property conditioned on f* (xi) and h* (k, xj, tl). The term
f* (xi) represents the perturbation of log hydraulic property,
either T or S measured at the ith location, and i = 1,. . . nf,
where nf is the total number of f measurements. The term
h* (k, xj, tl) denotes the observed groundwater level
perturbation at location xj at time tl when the river distur-
bance has reached a location k. It must be noted here that
h* (k, xj, tl) represents the head due to the line source
extending in space (and temporally varying) from k = 0 to
wherever the river disturbance location is at time tl and not
just due to the point source corresponding to the position of
river disturbance. The linear estimator is

f̂
ð1Þðx0Þ ¼

Xnf
i¼1

l0i f
*ðxiÞ þ

Xnp
k¼1

XnhðkÞ
j¼1

Xntðk;jÞ
l¼1

m0k j lh
*ðk; xj; tlÞ ð8Þ

where f̂ (1) (x0) is the cokriged f value at location x0 ; np is
the total number of data sets (each corresponding to a
specific location of the river disturbance); nh(k) is the total
number of observation wells for the kth data set; nt(k, j) is
the total number of head measurements in time at the jth
observation well in the kth data set. The cokriging weight
(l0i) represents contribution of measurement f * at the ith
location to the estimate at location x0. The contribution to
the estimate from the observed head h*(k, xj, tl) is denoted
by m0kjl. These weights are obtained by solving the cokrig-
ing system of equations [see Xiang et al., 2009].
[23] After obtaining the new estimate for all the elements

using cokriging, the conditional covariance of f, eff, is then
determined by

eð1Þff ðxm; xnÞ ¼ Rff ðxm; xnÞ �
XNf

k¼1

lmkRff ðxk ; xnÞ

�
Xnp
k¼1

XnhðkÞ
j¼1

Xntðk;jÞ
l¼1

mmkjlRhf ðk; xj; tlÞ; xn
� �

ð9Þ

where m and n = 1, . . .ne. The unconditional covariance of
the parameter is denoted by Rff and cross covariance
between h and f by Rhf. The conditional covariance reflects
the effect of data on the reduction of uncertainty in the
estimated parameter field. Subsequently, the estimated log
property fields are converted to the arithmetic scale and then
used to solve equation (1) for the conditional effective head
fields, h(1) (k, xj, tn).
[24] Following cokriging, a linear estimator of the fol-

lowing form:

f̂
ðrþ1Þðx0Þ ¼ f̂

ðrÞðx0Þ þ
Xnp
k¼1

XnhðkÞ
j¼1

Xntðk;jÞ
n¼1

wðrÞ
0kjn

� h*ðk; xj; tnÞ � hðrÞðk; xj; tnÞ
h i

ð10Þ
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is used to improve the estimate for iteration r > 1, where
w0kjn
(r) is the weight term, representing the contribution of the

difference between the observed and simulated conditional
heads (i.e., h* (k, xj, tn) and h(r) (k, xj, tn), respectively) at
iteration r at location xj of the kth data set at time tn to the
estimate at location x0. The weights are determined by
solving the following system of equations:

Xnp
k¼1

XnhðkÞ
j¼1

Xntðk;jÞ
l¼1

wðrÞ
0kjl eðrÞhh ðp; xm; tqÞ; ðk; xj; tlÞ

� �
þQðrÞdkjl

h i

¼ eðrÞhf ðp; xm; tqÞ; x0
� �

ð11Þ

where p = 1,. . .np, m = 1,. . .nh and q = 1,. . .nt. The terms
ehh
(r) and efh

(r) are the conditional covariance and the
conditional cross covariance at iteration (r), which are
evaluated using a first-order approximation based on the
conditional covariance of f (i.e., eff

(r) which is obtained from
equation (9) for the first iteration). A dynamic stabilizer,
Q(r), is added to the diagonal elements of ehh

(r) (dkjl is the
Dirac delta, equal to 1 when k = j = l and 0 otherwise) to
stabilize the solution to equation (11). The dynamic
stabilizer at iteration, r, is the maximum value of the
diagonal elements of ehh

(r) at that iteration times a user-
specified multiplier [see Yeh et al., 1996]. After completion
of the estimation using equation (10) for all elements in the
domain, the conditional covariance of f is updated
subsequently as given below:

eðrþ1Þ
ff ðxm; xnÞ ¼ eðrÞff ðxm; xnÞ �

Xnp
k¼1

XnhðkÞ
j¼1

Xntðk;jÞ
l¼1

wmkjle
ðrÞ
hf ðk; xj; tlÞ; xn
� �

ð12Þ

where n and m = 1,. . .ne. Iteration between equations (10),
(11), and (12) continues until some convergence criterion is
met (see Xiang et al. [2009] for details).

[25] Observed well hydrographs often contain noise (i.e.,
signals caused by processes omitted by the model, including
measurement errors, evapotranspiration, regional flow, pre-
cipitation, groundwater withdrawal and/or recharge, baro-
metric variation, and many other natural phenomena) in
addition to effects of heterogeneity. Such unresolved noises
or unaccounted signals can lead to divergence of inverse
solutions (i.e., unrealistic estimates). As a consequence, an
important issue is what level of observed heads should be
used to extract the effect of heterogeneity.
[26] Stabilization of mean square error of the simulated

head based on the estimate of the property during iteration
provides a way to address this issue [Xiang et al., 2009].
That is,

L2condðrÞ ¼
1

N

XN
i¼1

h*i � ĥ
ðrÞ
i

� �2

ð13Þ

where h*i and ĥi
(r) are observed and simulated heads,

respectively; i is the index denoting the observation in a
given time and location from a river stage data set; N is the
total number of head observations from all the data sets.
Hereafter, we will refer to equation (13) as the conditional
L2 norm.

4. Numerical Simulations

4.1. Description of the Synthetic River-Aquifer System

[27] The synthetic groundwater basin considered in this
test case consists of a semiconfined aquifer in a river basin
deposit bounded by mountains (see Figure 1). The basin is
oriented approximately north-south and is 130 km long
(north to south) and 130 km wide (east to west). Flow in the
196 km long river enters the basin at the northern end and
exits at the southern end as shown in Figure 1. Mountains
on either side of the basin act as impermeable boundaries,
while the boundary segments near the entry and exit points
of the river are constant head boundaries. Notice that in the
middle of the basin, there are two impermeable regions,
representing outcrops of bedrocks. The synthetic basin was
created to mimic the prominent basin topographic features
of the Hanford site, Washington [Thorne et al., 2006]. It
must be noted here that the model considered in this
synthetic test case does not represent the documented
geologic and stratigraphic features of Hanford site and this
study is not aimed at investigating groundwater flow and
aquifer characteristics at the Hanford site.
[28] Model domain for the aquifer is discretized into 1935

square elements, each of a uniform size of 2 km � 2 km.
The river is superimposed on the aquifer grid and discre-
tized into lengthwise segments accordingly. Figure 1 shows
the cell layout of the modeling domain and the relative
locations for the river and the associated flow boundaries.
Values of T and S for all the elements in the synthetic aquifer
are shown in Figures 2a and 2b, respectively. They were
obtained using a stochastic random field generator [Gutjahr,
1989] and follow multi-Gaussian probability densities with
an exponential covariance function. Mean and variance for
the lnT field are 1.06 (the unit of T is m2/s) and 1.0,
respectively and mean and variance of lnS are �13.8 and
0.1, respectively. Correlation lengths are the same for ln T

Figure 1. Plan view of the synthetic groundwater basin
showing geometry of the river and the aquifer. Dark circles
represent locations of the observation wells, and dark
squares represent constant head boundaries. The three light
circles had low SNR values and were discarded from
inverse modeling.
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and ln S fields: 26 km in west to east direction, and 8 km in
north to south direction.
[29] Flow in the river and recharge to the aquifer are

simulated using channel slope S0 = 5 � 10�5, the Manning
roughness coefficient n = 0.04 (some typical value by
Henderson [1989]), river width B = 650 m that is constant
along the entire length of the river, and a river bed leakage
coefficient in equation (5) given as K

c
= 10�7 s�1.

4.2. Forward Flow Simulation

[30] Prior to simulating the river disturbance event, the
groundwater flow model was run with a constant river flow
4000 m3/s until the head distribution in the aquifer reached a
steady state subjected to the given boundary conditions.
This preevent steady state condition serves as the initial
groundwater head condition for calculating head changes in
the aquifer induced by the flood event.
[31] In order to simulate the river disturbance, a delta

shaped stream hydrograph is applied at the upstream point
(northern end) of the river at t = 0 s, representing a
controlled dam discharge. This stream hydrograph has the
following characteristics: inflow to the river during the dam
discharge increases linearly from 4000 m3/s to 13000 m3/s
in 4500 s and decreases to 4000 m3/s at t = 9000 s (see
Figure 3). These flow characteristics are consistent with data
reported in by Kimbrough et al. [2006] (see ‘‘Water Data
Report WA-05-1: Klickitat and White Salmon River Basins

and the Columbia River from Kennewick to Bonneville
Dam,’’ http://pubs.usgs.gov/wdr/2005/wdr-wa-05-1/pdf/
wa00103ADR2005_Figure66.pdf). Equations (4) and (6)
were solved together using a specified time step for the
spatial and temporal distributions of the river stage, d(l, t).
Subsequently, recharge to the groundwater system was
evaluated using equation (5) at that time step. This net rate
of recharge at this time step over a segment of length Dl in
equation (5) was then equally distributed to the two nodes
of the element of the groundwater flow model (equation (1))
as recharge at the node. Subsequently, equation (1), with the
specified recharge per unit area, q (x,y,t), initial and bound-
ary conditions, was then solved for the hydraulic head
distribution in the aquifer. The total simulation time is
192,000 s (2.22 days) with a uniform time step of 1,500 s
each.

4.3. Aquifer Response to Flood

[32] To conduct the inverse modeling experiment, 39
observation wells were used to record river-induced head
changes in the synthetic aquifer. The observation wells were
deliberately placed at various distances away from the river
(solid circles in Figure 1) to cover the entire aquifer basin.
Contour plots of changes in hydraulic head distributions in
the aquifer caused by the propagation of the river distur-
bance at three selected times (namely 30,000, 60,000, and
90,000 s) which correspond to three different locations of
the river disturbance are presented in Figures 4a, 4b, and 4c.
Figure 4 shows that groundwater wells that are located
downstream respond even before the disturbance reaches a
location in the river closest to these wells. Figure 5 shows
noisy hydrographs recorded at some selected wells (i.e.,
W4, W38, W15, and W31 in Figure 1) in the aquifer and
corresponding denoised hydrographs. As expected, obser-
vation wells closest to the river in the lateral direction (i.e.,
W4, W38) respond faster than those located further away
from the river (i.e., W15, W31) as indicated by the arrival
time of the peak. Furthermore, irregular shapes of these well
hydrographs reflect convolution effects of propagation of

Figure 2. Spatial distributions of true (a) transmissivity
and (b) storage coefficient in the synthetic domain.

Figure 3. Propagation of the flood wave in the river.
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the river disturbance as well as the effect of aquifer
heterogeneity. The hydraulic behavior induced by propaga-
tion of the disturbance are analogous to that induced by a
series of groundwater recharge wells distributed along the
stream, each of which injects water in to the aquifer at rates
varying with time and location according to the streamflow
hydrograph. Therefore, measurements of the river stage in
essence yield knowledge of the temporal and spatial vari-
able recharge rates that induce the pressure disturbance
throughout the aquifer.

4.4. Accounting for Measurement Errors

[33] Observed well hydrographs often contain noise (i.e.,
signals unaccounted for by the groundwater model) in
addition to effects of heterogeneity. Effects of the noise
therefore should be considered in the interpretation of the

river stage tomography data. For the synthetic test case
considered here, white noises with a standard deviation of
0.02 m was superimposed onto the simulated hydrographs.
Subsequently, the signal-to-noise ratio (SNR), defined as
the ratio of observed drawdown to standard deviation
(known) of the noise, is computed for all the observations
to assess quality of the well hydrographs. Three wells
located in the southeast portion of the domain (shown as
light circles in Figure 1) were found to be of poor quality
because of their small SNR (<1) and are discarded from the
inversion procedure. To eliminate noise in the remaining
hydrographs, a wavelet denoising method [Mallat, 1999] is
used in this study. A detailed procedure for wavelet-based
denoising is presented at http://www.mathworks.com.
[34] In this study, we employ the Daubechies-6 wavelet

functions and a hard-thresholding method [Mallat, 1999]
(threshold value = 4) for the wavelet coefficients to denoise
the corrupted hydrographs. It is worth mentioning here that
the threshold value for wavelet coefficients determines the
extent to which the perturbations due to aquifer heteroge-
neity in a well hydrograph are preserved and not eliminated
in the denoising procedure (i.e., the thresholding procedure
sufficiently removes noisy components in the signal, but
may also ‘‘over smooth’’ the signal). Effectiveness of the
wavelet denoising procedure to remove noise from hydro-
graphs at some selected observation wells is demonstrated
in Figure 5.

4.5. Performance Assessment

[35] Performance of river stage tomography and SimSLE
for the synthetic case was evaluated using the standard
correlation measure between the true and the estimated
values. A high correlation implies that the two fields are
similar in pattern, even though the mean value of the two
fields may be quite different. Thereby, in addition to the
correlation, mean absolute error (L1 norm) and mean square
error (L2 norm) of the estimated field are evaluated.

Figure 4. Contour plots of change in heads in the aquifer
at three selected simulation times.

Figure 5. Observed noisy well hydrographs and their
denoised counterparts at four selected locations in the
aquifer.
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[36] Besides the correlation analysis as well as the L1 and
L2 norms, the similarity between the true and estimated
hydraulic property fields was also evaluated with a fuzzy
similarity comparison method, which has been applied to
the task of comparing spatial patterns [e.g., Hagen, 2003].
Details of the fuzzy similarity analysis are also described by
Xiang et al. [2009].

4.6. Setup and Results of Tomographic Inversion

[37] After denoising the hydrographs, the inversion pro-
cess is initiated with initial values for the mean, variance
and correlation scales of the estimated parameters. For the
synthetic case study, these initial values for the structural
parameters were set equal to their true mean values.
Note that Yeh and Liu [2000] and applications of SLE
by others [e.g., Liu et al., 2007a] have shown that
parameter estimates obtained using the SLE algorithm

with sufficient number of secondary data sets are insen-
sitive to the prior information about structural parame-
ters as long as the principal directions of the statistical
anisotropy are not significantly different from their true
directions.
[38] Additionally, values of T and S are assumed to be

known at locations of constant head boundaries (Figure 1)
to meet the necessary and sufficient conditions that can
make the inverse problem better posed [see Yeh et al.,
2007]. Finally, denoised head changes corresponding to
four different times at 36 observation wells were used to
estimate the spatial distribution of T and S in the basin.
Specifically, the first set of estimates (case 1) was based on
head changes observed from all wells at time 30,000 s (see
Figure 4a), and the estimated T and S are illustrated in
Figures 6a and 6d, respectively. Meanwhile, Figures 6b and
6e show plots of the estimated T and S distributions using

Figure 6. Transmissivity estimates for (a, b, c) cases 1, 2, and 3 and (d, e, f) the corresponding storage
estimates.
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the head changes at times 30,000 and 60,000 s (case 2). The
estimated T and S distributions based on the head changes at
times 30,000, 60,000 and 90,000 s (case 3) are shown in
Figures 6c and 6f, respectively. Note that for each case, the
inverse modeling commenced at time 0.0 s. For cases 1–3,
the iterative procedure in the SimSLE was terminated at
13th, 15th, and 16th iterations, respectively, on the basis of
the relative change in the conditional L2 measure (equation
(13)).
[39] Scatterplots of estimated versus true T fields for the

three cases are shown in Figures 7a – 7c and the
corresponding plots for S are presented in Figures 7d–7f.

Performance metrics of the estimates for the three cases are
summarized in Table 1. The final estimated T field corrob-
orates very well with the true field (correlation = 0.901)
while the estimated S field only attains a correlation of
0.613 with the true S field.
[40] According to Figures 6 and 7 and the performance

metrics in Table 1, the estimate of the T field improves as
groundwater level data at different times, corresponding to
different locations of the river disturbance during its down-
stream migration, are included in the inversion. The im-
provement of the estimated S field however is not obvious.

Figure 7. Scatterplots of true versus estimated values of the transmissivity and storage coefficients for
the three cases.
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