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[1] In this study, we developed a stochastic estimator for characterizing the hydraulic
heterogeneity in both unsaturated and saturated zones of unconfined aquifers using transient
drawdown data from sequential pumping tests. This estimator was built upon the successive
linear estimator by Yeh et al. (1996), the simultaneous successive linear estimator by
Xiang et al. (2009), and the 3-D finite element program for flow and transport through
heterogeneous media by Srivastava and Yeh (1992). The estimator was tested afterward
using simulated data sets of sequential pumping tests in a synthetic unconfined aquifer
where saturated conductivity, specific storage, saturated water content, and pore-size
distribution parameter vary spatially in three dimensions. Test results show that the
estimator is able to produce parameter fields that capture the overall 3-D pattern of the true
heterogeneous parameter fields. We subsequently validated the estimated parameter fields
by assessing their ability to predict drawdowns during an independent pumping test,
which was not used during the estimation phase. Results of the validation show that the
predicted drawdowns based on the estimated heterogeneous parameter fields are in close
agreement with the true drawdowns. In addition, predicted drawdowns based on the
parameter fields from the joint interpretation are superior to those based on the parameters
estimated from the homogeneous conceptual model. Lastly, while many field experiments
are necessary to fully assess the robustness of this estimator and sequential pumping tests,
results of this study suggest they are a promising characterization technique for
unconfined aquifers.

Citation: Mao, D., T.-C. J. Yeh, L. Wan, J.-C. Wen, W. Lu, C.-H. Lee, and K.-C. Hsu (2013), Joint interpretation of sequential
pumping tests in unconfined aquifers, Water Resour. Res., 49, 1782–1796, doi:10.1002/wrcr.20129.

1. Introduction

[2] Detailed characterization of inherent aquifer heteroge-
neity is necessary for an accurate assessment of groundwater
resource and pollution problems. Traditional characterization
approaches have adopted homogeneous conceptual models
that assume aquifer homogeneity and have attempted to
derive effective hydraulic parameters based on drawdowns

from a single pumping test, for example, those by Theis
[1935] and Cooper and Jacob [1946] for confined aquifers
and those by Boulton [1963], Dagan [1967], Brutsaert
[1970], Streltsova [1972a, 1972b], Neuman [1972], Lakshmi-
narayana and Rajagopalan [1978], Moench [1995], Mathias
and Butler [2006], and Mishra and Neuman [2010] for
unconfined aquifers. Recent numerical, sandbox, and field
experiments by Wu et al. [2005], Straface et al. [2007],
Xiang et al. [2009], Wen et al. [2010], Huang et al. [2011],
and Berg and Illman [2011b] however questioned the repre-
sentativeness of the estimates from these conventional
approaches.

[3] Aquifer characterization built upon heterogeneous
conceptual models is also not immune from problems.
Huang et al. [2011], using numerical and field experiments,
demonstrated that the heterogeneous transmissivity distri-
bution estimated from many observation wells during a sin-
gle pumping test could vary with the location of the
pumping well (i.e., scenario-dependent estimates). More
critically, they showed that predicted drawdowns based on
this type of heterogeneous characterization approaches are
biased if the stress location is different from the pumping
well location used in the characterization.

[4] For the last decade, sequential pumping tests, multi-
well interference tests, or hydraulic tomography (HT) have
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been the subject of active research to characterize the spa-
tial distributions of hydraulic parameters. They include nu-
merical studies [e.g., Gottlieb and Dietrich, 1995; Yeh and
Liu, 2000; Bohling et al., 2002; Zhu and Yeh, 2005, 2006;
Fienen et al., 2008; Ni and Yeh, 2008; Castagna and
Bellin, 2009; Xiang et al., 2009; Liu and Kitanidis, 2011],
followed by laboratory sandbox studies [e.g., Liu et al.,
2002; Brauchler et al., 2003; Illman et al., 2007; Liu
et al., 2007; Illman et al., 2008; Yin and Illman, 2009; Ill-
man et al., 2010; Berg and Illman, 2011a; Illman et al.,
2012] and then experimental field studies [e.g. Bohling
et al., 2007; Li et al., 2007; Straface et al., 2007; Cardiff
et al., 2009; Illman et al., 2009; Berg and Illman, 2011b;
Brauchler et al., 2011; Huang et al., 2011]. All these stud-
ies have consistently shown that transient HT can identify
not only the pattern of the heterogeneous hydraulic conduc-
tivity field but also the variation of specific storage. More
importantly, the hydraulic property fields estimated by HT
have been demonstrated to yield much better predictions of
flow and transport processes than conventional characteri-
zation approaches [see Yeh and Zhu, 2007; Ni et al., 2009;
Huang et al., 2011; Illman et al., 2012]. Recent work by
Berg and Illman [2011b] further substantiated the robust-
ness of HT for a highly heterogeneous geological medium
with a variance of log hydraulic conductivity of 5.4 and a
vertical correlation scale of 0.15 m. Thus, the call for
changing the way we collect and analyze data for character-
ization of aquifers by Yeh and Lee [2007] appears to be
well founded.

[5] Most HT studies, however, have focused on confined
aquifers and estimation of saturated hydraulic conductivity
and specific storage. To the best of our knowledge, the only
few HT applications associated with unconfined aquifers
are the work done by Zhu and Yeh [2008], Zhu et al.
[2011], Cardiff et al. [2009], and Cardiff and Barrash
[2011]. In the work by Cardiff et al. [2009], they presented
a potential-based inversion method for steady-state pump-
ing tests in an unconfined aquifer. The method employs
the Dupuit-Forchheimer assumption and neglects unsatu-
rated flow.

[6] Subsequently, Cardiff and Barrash [2011] developed
a 3-D transient HT approach for characterizing unconfined
aquifers with a fast drainage response assumption. This
assumption, in essence, ignores the effects of flow in the
unsaturated zone above the water table, and pressure-
dependent hydraulic conductivity and moisture release
nature of unsaturated flow process during lowering the
water table due to pumping. As a result, their method is lim-
ited to mapping hydraulic conductivity, specific storage, and
specific yield of the aquifer. Furthermore, Nwankwor et al.
[1984] and Endres et al. [2007] reported that models based
on the fast drainage response assumption often produce
unreasonably small values of the specific yield. Because of
these issues, Cardiff and Barrash [2011] suggested that their
model is most suitable for characterizing coarse-grained
aquifers during short-temporal-scale pumping tests.

[7] By analyzing the transition of different water release
mechanisms during pumping tests in unconfined aquifers
and examining the cross correlation between heads and het-
erogeneities in aquifers, Mao et al. [2011], Yeh et al.
[2012], and Mao et al. [2013] advocated that a multidimen-
sional heterogeneous variably saturated flow model would

provide a more realistic representation of the flow process
during a pumping test in unconfined aquifers. They also
suggested that the variability of unsaturated parameters, in
general, does not significantly affect the observed head in
saturated zones during pumping tests in unconfined
aquifers.

[8] Zhu and Yeh [2008] and Zhu et al. [2011] developed
an interpretation procedure based on the variably saturated
flow model for sequential pumping tests in unconfined
aquifers. Their results, however, are preliminary because of
some technical issues, solution convergence, and other
problems associated with computational efficiency. In this
study, we continued the work by Zhu and Yeh [2008] and
Zhu et al. [2011] to develop a versatile, stochastic, simulta-
neously successive linear estimator (SimSLE) based on the
3-D variably saturated flow model to jointly interpret draw-
down data from sequential pumping tests in unconfined
aquifers for characterizing the spatial distribution of aquifer
properties. Numerical experiments were then used to test
the estimator and spatial and temporal sampling strategies
proposed by Mao et al. [2013a, 2013]. Furthermore, we
evaluated these estimated parameter fields against those
from the traditional approach based on the homogeneous
assumption by predicting drawdowns during an independ-
ent pumping test.

2. Methodology

2.1. Equation for Variably Saturated Groundwater
Flow

[9] Flow in an unconfined aquifer involves processes in
saturated and unsaturated zones and dynamics of the water
table. The following governing equation for flow through
variably saturated media is a suitable candidate for describ-
ing the flow during pumping tests in unconfined aquifers
[Mao et al., 2011]:

r � K h; xð Þr hþ zð Þ½ � þ Q xp

� �
¼ !SS xð Þ þ C h; xð Þ½ � @h

@t
(1)

subject to boundary and initial conditions

hjG1
¼ h1; �K xð Þr hþ zð ÞjG2

¼ q; hjt¼0 ¼ h0; (2)

where r is the differential operator, t is time, �(h,x) repre-
sents the volumetric moisture content, and z is the eleva-
tion. h is the pressure head and is positive when the
medium is saturated and negative when unsaturated. Q(xp)
is the pumping rate per unit volume at location xp. The sat-
uration index ! is equal to one if the medium is saturated
and zero if the medium is unsaturated. The term SS(x) rep-
resents the specific storage, C(h,x)¼ d�(h,x)/dh is the soil
moisture capacity, and K(h,x) is the hydraulic conductivity
constitutive function. In equation (2), h1 is the prescribed
head at G1, q is the specific flux at G2, and h0 is the initial
pressure head.

[10] We adopted the Gardner [1958] model to describe
the hydraulic conductivity-pressure head relationship

K h; xð Þ ¼ KS xð Þe� xð Þh; (3)
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where KS(x) is the saturated conductivity, and �(x) is the
pore-size distribution parameter. The corresponding con-
sistent moisture water content relationship developed by
Russo [1988] was used:

� h; xð Þ ¼ �S � �rð Þ e0:5� xð Þh 1� 0:5� xð Þh½ �
n o2=2þm

þ �r: (4)

�S and �r are the saturated and residual moisture contents.
m is related to the tortuosity of the soil and is assumed
to be zero. We chose these models because the spatial
variability of parameters in equations (3) and (4) in the
field has been well documented [see Russo and Bouton,
1992].

[11] In this application, we use the code VSAFT3 (Vari-
ably SAturated Flow and Transport 3-D) developed by
Srivastava and Yeh [1992] to solve equation (1).

2.2. Simultaneous Successive Linear Estimator

[12] The following paragraphs discuss the stochastic esti-
mator for interpreting sequential pumping tests in uncon-
fined aquifers. The estimator is built upon the work by Zhu
and Yeh [2008] and Zhu et al. [2011] which is based on
successive linear estimator by Yeh et al. [1996] and Sim-
SLE by Xiang et al. [2009]. Later, the algorithm is formu-
lated for a highly parameterized heterogeneous conceptual
model and an equivalent homogeneous conceptual model.
2.2.1. Highly Parameterized Heterogeneous
Conceptual Model

[13] This algorithm first conceptualizes the spatially
varying natural log of a hydraulic parameter value as a sto-
chastic process in space or a spatial random field:

Yi xð Þ ¼ yi xð Þ þ yi xð Þ; (5)

where yi xð Þ is the unconditional mean which could be a
function of location x (i.e., a trend) or a constant, and yi(x)
is the perturbation. The subscript i is the parameter index
and ranges from 1 to N. In this study N¼ 4, when i¼ 1, the
parameter is KS, when i¼ 2, the parameter is SS, when
i¼ 3, the parameter is �, and when i¼ 4, the parameter is
�S. The spatial distribution of each parameter is implicitly
assumed to be normal and characterized by its mean, var-
iance, and correlation structure. The use of the natural loga-
rithm of a parameter aims to avoid any negative value for
its estimate. This estimation algorithm requires the aquifer
to be discretized into n material blocks and m computa-
tional finite elements. The vector x in this paper denotes
the location of either a material block or a node of the com-
putational finite element. The discretization of the aquifer
for material blocks may not be the same as that for the
computational finite element as discussed in section 3. The
number of parameter values to be estimated for the entire
aquifer is the number of material blocks multiplied by the
number of parameters. For example, if KS, SS, �, and �S are
to be estimated, the total number of parameter values to be
estimated will be 4n. Note that the matrices and vectors are
shown in bold characters, and the dimension of each matrix
is shown in parentheses.

[14] If necessary conditions for the estimation problem
to be well defined [see Yeh et al., 2011; Mao et al., 2013a]
are not met, an infinite number of possible values for each

parameter exist. For such ill-defined estimation problems,
the goal of our algorithm is to seek the most likely, condi-
tional, effective KS, SS, �, and �S fields, which will honor
the measurements of the parameters (hard data) and the
measurements of aquifer responses (such as heads) at sam-
pling locations, and which will provide statistically
unbiased predictions of flow fields. Additionally, the algo-
rithm estimates the uncertainty of the conditioned effective
parameter fields, which is reflected in the residual variance
of each parameter at each material block.

[15] Suppose measurements of parameters y�i (i¼ 1, N)
at locations from 1 to vi are available. A stochastic linear
estimator (cokriging) can be used to derive a conditional
mean parameter field. That is,

yci ¼
XN

i¼1

ki
T y�i ; (6)

where superscript T denotes transpose, yci n� 1ð Þ is the
estimated ith hydraulic parameter perturbation of n material
blocks over the entire domain, conditioned on the measure-
ments (subscript c denotes conditioned value); y�i �i � 1ð Þ
is the perturbation of the hydraulic parameter measured at
the sample locations. ki �i � nð Þ is a weight matrix which
can be derived using the following relationship:

Ry1y1 � � � Ry1yN

� . .
.

�

RT
y1yN

. . . RyN yN

2
64

3
75

k1

�

kN

2
4

3
5 ¼ R

0
y1y1

�

R
0
yN yN

2
4

3
5: (7)

Ryiyj vi � vj

� �
denotes the cross covariance between yi and yj

at the locations where they are measured. If i¼ j,
Ryiyi vi � við Þ becomes the covariance of the ith parameter.
The diagonal components of Ryiyi are the variance of param-
eter Yi. We used the exponential model for covariance in this
study. On the right-hand side of equation (7), R

0
yiyi

vi � nð Þ
is the covariance between the parameter values at the loca-
tions where they are to be estimated and those at locations
where we have measurements. Here we assume that the pa-
rameters of all material blocks are to be estimated.

[16] After incorporation of hard data into the estimation,
the conditional perturbation equation (6) is added to the
unconditional mean yi xð Þ to obtain Y1

ic xð Þ, where subscript
c denotes the conditioned value and superscript 1 indicates
the first estimate derived from cokriging using different pa-
rameters. Meanwhile, the uncertainty associated with the
parameter is updated using a first-order approximation:

e1
yiyj

x0; xdð Þ ¼ Ryiyj x0; xdð Þ �
Xn

i¼1

X�i

l¼1

kil
T x0ð ÞRyiyl xl; xdð Þ; (8)

where e1
yiyj

x0; xdð Þ represents the residual covariance or
cross covariance of the perturbation at location x0 and xd

(d¼ 1, . . . , n). If i¼ j, e1
yiyi

is the residual variance of the
parameter at that location, which represents the uncertainty
of the estimate at that location. In other words, the value of
the residual variance will become zero if an error-free mea-
surement of Yi is given at that location.
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[17] After conditioning the estimates with hard data sets,
the estimates are then conditioned with the secondary infor-
mation, i.e., observed head data from sequential pumping
tests, to improve the resolution of the estimates. In order to
do so, a linear estimator, based on the difference between
the observed and simulated heads at measurement locations
using previously estimated parameters, is employed:

Yrþ1
ic ¼ Yr

ic þ vr
i h� � hrð Þ; (9)

where Yr
ic, a n� 1 vector, is the estimated value of the ith

parameter conditioned with either hard or head data sets at
iteration r where r is the iteration index. When r¼ 1, Yr¼1

ic
is the cokriged parameter field conditioned on the hard
data. hr � � 1ð Þ denotes the corresponding � heads simu-
lated with the estimated parameters at iteration r. Here � is
the total number of head observations in time and space
from all pumping tests. Further, h� � � 1ð Þ is the observed
head and vr n� �ð Þ is the weighting coefficient matrix.
This matrix is derived by solving the following equation:

vr
i e

r
pp þ �I ¼ er

pyi
: (10)

epyi on the right-hand side of equation (10) represents the re-
sidual cross-covariance matrix between the observed heads
and the parameters to be estimated, which is derived in equa-
tion (12). I is the identity matrix, and � is the stabilizing fac-
tor. These two terms are employed to improve the
conditional number of equation (10). � is determined
dynamically according to a specified multiplier and the max-
imum value of the diagonal terms of er

pp at rth iteration.
[18] To derive er

pp and er
pyi

used in equation (10), a first-
order approximation of head perturbations is used:

p �
XN

i¼1

Jpyi yi; (11)

where p � � 1ð Þ is the head perturbation, and yi is the pa-
rameter perturbation. Jpyi is the Jacobian matrix � � nð Þ for
the sensitivity of observed heads with respect to parameter
Yi. The sensitivity is evaluated by an adjoint state method
(see section 2.3) based on the values of Yr

ic at iteration r.
The sensitivity is then used to obtain the cross covariance
between heads and hydraulic parameters :

epyi ¼
XN

j¼1

Jpyieyiyj : (12)

eyiyi n� nð Þ is the updated residual covariance using equa-
tion (8) after cokriging or using equation (14) when r> 1.
Head covariance epp � � �ð Þ based on the first-order analy-
sis can be written as

epp ¼
XN

i¼1

XN

j¼1

Jpyieyiyj J
T
pyj
: (13)

The above expression eyiyj could be cross covariance
between parameter yi and parameter yj if they are statisti-
cally correlated.

[19] After updating the estimate using equation (9), co-
variance matrix er

yiyj
at rth iteration is subsequently updated

to reflect the incorporation of the head data sets from
pumping tests. Specifically,

erþ1
yiyj

x0; xdð Þ ¼ er
yiyj

x0; xdð Þ �
X�
l¼1

vr
il x0ð Þer

yip
xl; xdð Þ: (14)

Note that equation (9) is a linear estimator and uses head
differences to linearly extrapolate the new values of the
parameters; however, the relationship between heads and
parameters is nonlinear [Yeh et al., 1996]. As a result, equa-
tion (9) does not fully exploit the head information from
pumping tests. To maximize the information content in
heads about parameter values or to fully consider the nonlin-
ear relationship, procedures from equation (9) through equa-
tion (14) are iterated until convergence criteria are met. The
iteration stops when the change of the largest variance of
the estimated parameter field and/or when the change of the
maximum head misfit among observation data are/is smaller
or equal to a specified value.
2.2.2. Equivalent Homogeneous Conceptual Model

[20] The above SimSLE for the highly parameterized
heterogeneous conceptual model is also readily capable of
estimating effective parameters for an equivalent homoge-
neous conceptual model. For the homogeneous conceptual
model, one only has to estimate four effective parameters
(KS, SS, �, and �S) for the entire aquifer. Each of them is
conceptualized as a random variable, instead of a stochastic
process. Each random variable represents the uncertainty
about the parameter value due to the lack of measurements
of this parameter or estimation errors due to errors in meas-
urements of aquifer responses.

[21] The algorithm for the homogeneous conceptual model
is the same as that for the heterogeneous model, with the
exception that the cokriging procedure that uses measure-
ments of hydraulic parameters is skipped. Note that only one
uniform value is sought for each parameter over the entire
aquifer, and the errors in parameter value are spatially uncor-
related. Therefore, dimensions of those matrices or vectors
are changed accordingly, i.e., Jpyi � � 1ð Þ, eyiyj 1� 1ð Þ,
Rpyi � � 1ð Þ, Rpp � � �ð Þ, Ryiyj 1� 1ð Þ, and v � � 1ð Þ.

[22] For this model, the Jacobian matrix or sensitivity is
calculated by the perturbation method since the adjoint
method offers no advantages under this condition. The
objective of this homogeneous SimSLE is to derive an
effective value for each parameter. They are then used as
prior information for the subsequent SimSLE for heteroge-
neous conceptual model.

2.3. Sensitivity Evaluation by Adjoint State Method

[23] The evaluation of sensitivity for the heterogeneous
conceptual model is carried out by the adjoint state method.
We briefly discuss this method here, and details of the deri-
vation are referred to Li and Yeh [1998, 1999] and Hughson
and Yeh [2000]. The sensitivity is evaluated at the mean
value of each parameter. The subscript i from parameter Yi

is dropped off here for simplification. The marginal sensi-
tivity for a parameter Y of a performance function G is

@P

@Y
¼
Z
T

Z
�

@G

@Y
þ @G

@h

@h

@Y

� �
d�dt: (15)

MAO ET AL.: INVERSE MODELING OF PUMPING TESTS IN UNCONFINED AQUIFERS

1785



[24] The first term inside the integral represents the
direct impact of parameter Y on the performance function
G, and the second term means the indirect impact via pres-
sure head h. T and � are the temporal and spatial domains,
respectively. In our research, we choose the performance
function as

G ¼ h� x� xk ; t � tcð Þ; (16)

where � x� xk ; t � tcð Þ is the Kronecker delta function, and
the performance function represents the observed head at
location xk and time tc.

[25] We next differentiate the governing equation (1)
with respect to any log hydraulic parameter, multiply the
result with an arbitrary function � (adjoint state variable),
and rearrange the resultant equation. We have

Z
T

�
Z
�

�
@K hð Þ
@h
r�r hþ zð Þd��

Z
�

@K hð Þ
@Y

r�r hþ zð Þd�

8<
:
þ
Z
�

�r � K hð Þr�½ �d��
Z
�

@ 	SS þ C hð Þ½ �
@Y

@h

@t
�d�

þ
Z
�

	SS þ C hð Þ½ � @�

@t
�d�

9=
;dt

þ
Z
T

Z
G

�K hð Þr�dG�
Z
G

�K hð Þr�dGþ
Z
G

�
@q

@Y
dG

8<
:

9=
;dt

�
Z
�

	SS þ C hð Þ½ ���
���t¼final

t¼0
d� ¼ 0;

(17)

where �¼ @h/@Y is the sensitivity of pressure with respect
to any parameter Y. We then add equation (17) to both sides
of equation (15) to obtain

@P

@Y
¼
Z
T

Z
�

@G

@Y

� �
þ � @G

@h
þr � K hð Þr�½ �

��

þ 	SS þ C hð Þ½ � @�

@t
� @K hð Þ

@h
r�r hþ zð Þ

��
d�dt

þ
Z
T

Z
�

� @K hð Þ
@Y

r�r hþ zð Þ � @ 	SS þ C hð Þ½ �
@Y

@h

@t
�

� �
d�dt

þ
Z
T

Z
G

�K hð Þr�dG�
Z
G

�K hð Þr�dGþ
Z
G

�
@q

@Y
dG

0
@

1
Adt

�
Z
�

	SS þ C hð Þ½ ���
���t¼final

t¼0
d�:

(18)

In order to eliminate the terms relating to � in equation
(18), we set the terms inside the large parentheses zero.
That is,

r � K hð Þr�½ � � @K hð Þ
@h
r�r hþ zð Þ þ � x� xk ; t � tcð Þ

¼ � 	SS þ C hð Þ½ � @�

@t
:

(19)

Equation (19) is the adjoint state equation, which will be
solved for � with the following boundary and final time
conditions

� ¼ 0 at t ¼ tfinal

� ¼ 0 at G1

K hð Þr� ¼ 0 at G2:

(20)

Notice that while this adjoint equation is linear, it must be
solved once for each head observation time at a given ob-
servation location. This is necessary because the hydraulic
conductivity and moisture capacity terms in equation (19)
vary with the pressure head, which changes with time.
Therefore, the use of a large number of temporal head data
for estimation would significantly increase computational
efforts. It may not improve the estimates since the data
may carry redundant information about the heterogeneity
[Mao et al., 2013].

[26] With these choices of adjoint state variable, per-
formance function, and boundary conditions, equation (18)
becomes

@P

@Y
¼ @h

@Y
¼
Z
T

Z
�

� @K hð Þ
@Y

r�r hþ zð Þ
�

� @ 	SS þ C hð Þ½ �
@Y

@h

@t
�

�
d�dt:

(21)

[27] This leads to the sensitivity of an observed head at
location xk and time tc with respect to each parameter at
element e :

@h xk ; tcð Þ
@ln KS xeð Þ

¼
Z
T

Z
�e

�K hð Þr�r hþ zð Þd�dt; (22)

@h xk ; tcð Þ
@ln� xeð Þ

¼
Z
T

Z
�e

��@K hð Þ
@�

r�r hþ zð Þ � �@C hð Þ
@�

@h

@t
�

	 

d�dt;

(23)

@h xk ; tcð Þ
@ln SS xeð Þ

¼
Z
T

Z
�e

�SS
@h

@t
�d�dt; (24)

@h xk ; tcð Þ
@ln �S xeð Þ

¼
Z
T

Z
�e

��S
@C hð Þ
@�S

@h

@t
�d�dt: (25)

[28] Generally speaking, in the finite element method,
the computation grid is commonly set to be the same as the
material block (i.e., an element where uniform hydraulic
properties are assigned), and therefore, integration domain
�e in the above equations is itself an element. For variably
saturated flow system, finer computation grids are needed
for the unsaturated region to expedite convergence or
ensure the mass balance. Using the same number of ele-
ments for materials as the number of computational ele-
ments, the computational burden in terms of speed and
memory requirements can increase drastically. To alleviate
these problems, we developed a dual grid or element sys-
tem: computational and material grids.

[29] The computational grid is overlaid on the material
grid. As a result, the number of material elements where
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parameters are to be estimated remains the same, while the
computational grids are refined to increase the accuracy of
predicted pressure head at location where the hydraulic gra-
dient is high. This permits dynamical change in the compu-
tation grid without changing the number of parameters to be
estimated. The accuracy of the sensitivity based on equations
(22)–(25) is also improved since the integration domain �e

(the material element) contains several computation grids.

2.4. Hybrid Computing by MPI and OpenMP

[30] The adjoint state approach calculates sensitivity for
each observation data independently, which is suitable for
the parallel computing algorithm by Message Passing Inter-
face (MPI) [Gropp et al., 1999] on a cluster system. For
this work, we also utilized another parallel computing tech-
nique, OpenMP [Chapman et al., 2007], which takes
advantage of multiple cores on each computer. The Alge-
braic Multigrid Methods for Systems (SAMG) for solving
sparse matrix was used here [St€uben and Clees, 2010].
Tests using a forward model showed that this new solver
accelerated computational speed up to 20 times. During the
code execution, MPI is used to distribute the workload to
different machines. On each machine, OpenMP is used for
solving the groundwater governing equation (1), adjoint
state equation (19), and some matrix multiplications, i.e.,
the calculation of cross covariance in equation (12). A clus-

ter with 6 Dell PowerEdge R410 servers was used for this
study. Each server was equipped with two quad-core Intel
XeonE5620 2.4 GHz CPUs and 32 GB physical memory.

3. Numerical Experiments

3.1. Numerical Model Setup

[31] A 3-D synthetic unconfined aquifer was created to
test the joint interpretation algorithm. The aquifer was 50 m
� 50 m � 9 m and was discretized into 11,250 uniform ma-
terial blocks where each block was 2 m � 2 m � 0.5 m in
size. The computational finite element grid consisted of
87,856 rectangular cuboid elements of different sizes and
95,220 nodes. A computational grid with vertical space of
0.2 m was assigned near the water table and 0.5 m for the
rest of the domain. In the horizontal x direction, the grid
space was 0.5 m for the segment from x¼ 11 to 39 m, and
1 m for the elements on both sides of the segment, and
became 2 m for the rest till the boundary. The same discreti-
zation scheme was used for the y direction.

[32] Hydraulic parameters (ln KS, ln SS, ln �, and ln �S)
of each material block were treated as stochastic processes
or random fields with jointly normal distributions. The pa-
rameters were assumed to be independent with each other.
One realization of each random parameter field was gener-
ated by the spectral method [Gutjahr, 1989] (see Figure 1).

Figure 1. Generated true random fields for (a) KS, (b) SS, (c) �, and (d) �S. The nine columns of points
show the location of wells.
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The geometric mean of the KS, SS, �, and �S is 0.005
m/min, 0.0008/m, 4.0/m, and 0.37. The details of the spa-
tial statistics (mean, variance, and correlation scales)
describing the spatial variability of each parameter are
listed in Table 1. A correlation scale of 30 m in the hori-
zontal directions and 2 m in the vertical were used to create
a layered structure, typical sedimentary environment for a
loosely consolidated unconfined aquifer. According to the
analysis of field data by Russo and Bouton [1992], the vari-
ability of unsaturated parameters is usually smaller than
that of the KS. The statistics of SS from previous studies is
not readily available. Hence, we assigned it the same corre-
lation scales and variance as those of the KS.

[33] Initial condition was assumed to be hydrostatic with
the water table located at z¼ 6.7 m; Constant total head of
6.7 m was assigned to the four sides of the aquifer and no
flux boundary on the top and bottom surfaces.

[34] Nine wells were installed in the aquifer (A1–A9
from left to right and then next row, see Figure 1). Three
pumping tests were simulated at wells A1, A5, and A9. The
screen interval of each pumping well was assumed to be
from z¼ 0 to 4 m. During each pumping test, the other
eight wells served as observation wells, with point observa-
tion at six different levels, z¼ 1, 3, 5, 6, 7, and 8 m across
both saturated and unsaturated zones. Each pumping test
lasted for 300 min at a discharge of 0.06 m3/min, which is
sufficiently long to create a cone of depression covering
most of the aquifer domain.

[35] The stopping criteria for the SimSLE are as follows:
(1) the largest successive head observation misfit is less
than 0.001 m and (2) the largest change of the variance of
estimated parameters is smaller than 0.0005. The iteration
of the estimation algorithm will stop if one of these two cri-
teria is reached.

[36] Hughson and Yeh [2000] suggested that a value
ranging from 1 to 4 for the multiplier in � (equation (10)) is
sufficient for stability. In our SimSLE algorithm, with inclu-
sion of head observations from multiple pumping tests, the
head residual covariance epp becomes less diagonally domi-
nant. Equation (10) becomes ill-conditioned, and thus, a
larger multiplier is needed to stabilize the equation. In the
synthetic case used here, a typical value for the multiplier is
18–25.

3.2. Data Selection

[37] According to the cross-correlation analysis by Mao
et al. [2013], we selected only one to two data points which
cover the early and late time periods of each hydrograph
for the joint interpretation. Specifically, before the joint
interpretation, well hydrographs from all pumping tests
were examined. If a complete S-shaped drawdown curve
was observed, two data at early time and another two data

at late time were sampled. When only part of the S-shaped
drawdown curve was observed, usually at wells far away
from the pumping well, due to insignificant drawdown at
early time, one or two drawdown data at late time were
used for analysis. The drawdown data around the interme-
diate period or the flat part of the S-shaped drawdown
curve were not used since the late time information is suffi-
cient for the estimation of unsaturated parameters. A total
of 373 head observations were used during inversion for
the three pumping tests, including 309 data in the saturated
zone and 64 in the unsaturated zone. In addition, the experi-
ments assumed that no measurements of parameters were
available.

[38] The robustness of the SimSLE with data infested
with noise for flow in saturated aquifers has been demon-
strated and discussed by Xiang et al. [2009] as well as
numerous applications to a large number of sandbox and
field experiments mentioned in section 1. All data here
were assumed to be error-free to test the validity of the
algorithm.

[39] Bohling and Butler [2010] advocated that some
drawdown data obtained from a sequential pumping test in
confined aquifers may contain redundant information and
should be excluded from HT analysis due to the principle
of reciprocity [Bruggeman, 1972]. However, as pointed out
by Huang et al. [2011], using ‘‘redundant’’ field data in the
SimSLE improved the estimates due to issues related to
measurement errors. In addition, Mao et al. [2013] showed
that the principle of reciprocity does not hold in variably
saturated flow due to the existence of an advection term.
Because of these facts, we utilize all the data, including the
pairs which may be redundant.

3.3. Performance Criteria

[40] The average absolute error L1 and mean-square error
L2 are used as the criteria to evaluate the estimated parame-
ter fields:

L1 ¼
1

n

Xn

i¼1

jP̂i � Pij; L2 ¼
1

n

Xn

i¼1

P̂i � Pi

� �2
; (26)

where P̂i and Pi represent the true and estimated parameter
fields, respectively. We also utilize the correlation coeffi-
cient and a scatterplot to describe the fitting between the
true and estimated fields. A correlation coefficient close to
1 indicates that the two fields have similar patterns:

cor ¼ 1

n� 1

Xn

i¼1
P̂i � P̂
� �

Pi � P
� �


P̂ i

Pi

: (27)

P̂ and P are the mean values for two different fields. 
P̂i

and 
Pi are the standard deviations for each parameter.
[41] These three criteria are also used to evaluate the pre-

dicted heads based on the estimated parameter fields during
the validation stage (section 4.4).

4. Results and Discussion

4.1. Equivalent Homogenous Conceptual Model

[42] The purpose of applying SimSLE to the equivalent
homogeneous conceptual model is twofold. First, we want

Table 1. Mean, Variance, and Correlation Scales of the Random
Hydraulic Parameters of the 3-D Synthetic Unconfined Aquifer

ln KS ln SS ln � ln �S

Mean �5.52 �7.60 2.08 �0.99
Variance 1.0 1.0 0.05 0.05
Correlation in x (m) 30.0 30.0 30.0 30.0
Correlation in y (m) 30.0 30.0 30.0 30.0
Correlation in z (m) 2.0 2.0 2.0 2.0
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to demonstrate that if necessary conditions are met, there
exists a unique solution to the inverse modeling of pumping
tests in unconfined aquifers. Second, we want to determine
values of effective parameters of the equivalent homogeneous
conceptual model, which will be used as starting values for
the heterogeneous conceptual model in sections 4.2 and 4.3.

[43] According to Yeh et al. [2011], the nonuniqueness
issue associated with parameter estimation or inverse prob-
lems arises from a lack of information required to make the
problems well defined. Mao et al. [2013a] suggested that
the necessary conditions for a unique estimate of hydraulic
parameters of a homogeneous geologic medium under tran-
sient variably saturated flow condition are (1) a sufficient
number of spatial or temporal head observations; the num-
ber of observations depends on the number of unknown pa-
rameters ; (2) flux boundary condition or discharge of the
pumping well ; (3) head values covering both saturated and
unsaturated conditions; (4) specification of the mathemati-
cal model for K(h,x) and �(h,x) relationships; and (5) spec-
ification of �r or water content data for the estimation of �S.

[44] Mao et al. [2013a] also demonstrated using 1-D nu-
merical experiments that once these conditions are met and
if head and flux measurements are free of errors, the esti-
mates converge to the true values regardless of initial guess
values. Under situations where the measurements are
infested with noise, the estimates are unique but converge
to values that may be different from true values. The dis-
crepancies between the true and estimated values diminish
as the number of heads in time and space increases.

[45] In our example, four parameters, KS, SS, �, and �S,
of the 3-D equivalent homogeneous model need to be esti-
mated. 373 head data from both saturated and unsaturated
zones from all pumping tests were used. Therefore, the

necessary conditions discussed above are met. To show
that the unique solution exists, three different guessed
values were tried. They all converged to the same values as
shown in Figure 2, indicative of the existence of a unique
solution. The estimated KS¼ 7.1 � 10�3 m/min and
SS¼ 9.2 � 10�4/m are slightly bigger than the geometric
means which are KS¼ 5.0 � 10�3 m/min, SS¼ 8.0� 10�4/m.
This result is consistent with results of the theoretical anal-
ysis of effective parameters by Yeh et al. [1985a, 1985b,
1985c]. The estimated effective unsaturated parameters,
�¼ 3.52/m and �S¼ 0.40, express the average performance
of the unsaturated zone, which merely related to the upper
unsaturated part of the aquifer.

4.2. Highly Parameterized Heterogeneous Conceptual
Model (Case 1)

[46] In this case, we estimated the four hydraulic param-
eters at each of the 11,250 material blocks of the aquifer.
SimSLE requires input of the mean value, correlation
scales, and spatial variance of each parameter. For this case
and case 2 in section 4.3, we used the effective parameter
values obtained from the equivalent homogeneous model
as the means, and true values in Table 1 were used for the
other inputs. As reported in numerous studies of HT over
the past decades [e.g., Yeh and Liu, 2000], accuracy of the
input spatial statistics (i.e., mean, correlation scale, and the
spatial variance) does not significantly impact the results of
the stochastic estimator because of the large number of
drawdown data sets used in the analysis.

[47] The 3-D cross-sectional views of the estimated pa-
rameter fields are shown in Figure 3, while the scatterplots
of the true versus estimated parameter values and associated
performance criteria are shown in Figure 4. Figure 5 shows

Figure 2. Estimated values of effective parameters (a) KS, (b) SS, (c) �, and (d) �S as a function of iter-
ation, starting with three different guessed values.
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the spatial variances of the estimated parameter fields as a
function of iteration. The residual variance of the estimated
parameter fields is shown in Figure 6.

[48] A comparison of the estimated fields (Figure 3) with
true fields (Figure 1) reveals that although the two fields
are not identical, estimated KS and SS fields capture the pat-
tern of the true fields quite well. Specifically, the high KS

zones in the southeast corner and in the northeast corner of
the saturated zone are closely depicted by the estimated
field. The high SS zone near the center of the true field below
the water table is also captured vividly by the joint interpre-
tation of the sequential pumping tests. Comparing the esti-
mated � and �S fields in Figures 3c and 3d to the true fields
in Figures 1c and 1d, we see that the effects of head condi-
tioning are mostly limited to the unsaturated zone.

[49] The robustness of the estimates is also evident if we
examine the scatterplots (Figures 4a and 4b). Blue data
points in Figures 4a and 4b present scatterplots of the esti-
mated versus true KS field and those for SS fields in the sat-
urated zone (0–6.7 m), respectively. On the other hand, the
red dots in Figures 4a and 4b represent the corresponding
fields in the unsaturated zone (6.7–9.0 m). Based on the
plots as well as the performance criteria, estimates of both
parameter fields are unbiased with some dispersion since
the necessary conditions as discussed in section 4.1 are
not met. Nevertheless, the KS estimates over the entire
saturated and unsaturated zone are better than those of SS.

It is also apparent that estimated parameters in the saturated
zone are closer to the true values than those in the unsatu-
rated zone. The red disk-shaped zone in Figure 4b indicates
that the joint interpretation cannot resolve the detailed spa-
tial distribution of SS values in the unsaturated zone, except
the mean value. The scatterplots of � and �S fields in
Figures 4c and 4d, respectively, show that the estimated �
and �S values in the saturated zone are not possible because
they have no influence on the flow in the saturated zone
(see equation (1)).

[50] Figure 5 shows that the spatial variances of the esti-
mated KS and SS fields increase as iteration progresses to
include the nonlinear relationship between parameters and
head. This increase indicates that more detailed heterogene-
ity is revealed. However, the estimated fields remain
smoother than the true fields as reflected by their asymp-
totic values, which are smaller than their true variances.
These results are expected since the SimSLE seeks the con-
ditional effective parameters with sparsely distributed mon-
itoring points of the pumping tests [Yeh et al., 1996]. The
variances of the estimated unsaturated parameters � and �S

are substantially smaller than the true value 0.05, suggest-
ing much smoother estimates for the unsaturated zone. The
joint interpretation noticeably yields more detailed infor-
mation about �S than �. These findings are also consistent
with the results of the cross-correlation analysis by Mao
et al. [2013].

Figure 3. Estimated distributions of (a) KS, (b) SS, (c) �, and (d) �S. The locations for the two cross
sections are set exactly the same as those for the true parameters in Figure 1 for comparison purpose.
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[51] The uncertainty associated with the estimate of each
parameter is illustrated in Figure 6 as the residual variance.
The overall low uncertainty of the KS estimates over the
entire aquifer suggests that the estimates in both saturated

and unsaturated zones are closer to the true fields. As
expected, large residual variance of SS remains in the
vadose zone, and large residual variances of � and �S stay
in the saturated zone.

Figure 4. Scatterplots of the estimated versus the true for parameters (a) KS, (b) SS, (c) �, and (d) �S.
The red color dots denote those in the unsaturated part of the aquifer (6.7–9.0 m), and the blue dots
denote those in the saturated part (0–6.7 m).

Figure 5. Variances of the estimated parameter fields as a function of iteration. Blue lines are for case 1,
and red lines are for case 2. The numerical number above each line is the variance value of the final esti-
mate for each parameter.

MAO ET AL.: INVERSE MODELING OF PUMPING TESTS IN UNCONFINED AQUIFERS

1791



4.3. Highly Parameterized Heterogeneous Conceptual
Model (Case 2)

[52] As discussed by Mao et al. [2011] and demonstrated
in sandbox experiments by Berg and Illman [2012],
impacts of variability of unsaturated parameters on the
observed heads in saturated zone are insignificant. In this
case, we tested this hypothesis by estimating only spatial
distributions of KS and SS of the entire aquifer while keep-
ing the effective mean values, �¼ 3.52/m and �S¼ 0.40,
and ignoring their variability during the joint interpretation.

[53] Figure 7 shows the estimated contour maps for KS

and SS fields, and Figure 8 shows their scatterplots. Gener-
ally, the estimated fields are very similar to these in Case 1.
The correlation coefficients are nearly the same for KS :
0.765 for Case 2 and 0.769 for Case 1. For SS, it is lightly
smaller in Case 2 (0.579) compared with 0.643 in Case 1.
The residual variances of these estimated fields are nearly
the same as those in Figures 5a and 5b, and therefore, they
are not shown.

[54] However, the spatial variances of estimated fields
are larger than the ones in Case 1, 0.73 and 0.39 compared
with 0.68 and 0.30 for ln KS and ln SS, as indicated in Fig-
ure 5a. This can be attributed to the assumption that the un-
saturated parameters were spatially uniform, and their
values were known. The interpretation algorithm, therefore,
attempts to adjust the remaining two parameters KS and SS

to fit head observations. Nevertheless, the impact from

unsaturated parameters is insignificant, and the variances of
the two parameters increase only slightly.

4.4. Validation Through Independent Pumping Tests

[55] Next, we validate the estimated parameter fields by
testing their ability to predict drawdowns during an inde-
pendent pumping test. The cross-correlation analysis by
Mao et al. [2013] indicated that heads observed at the same
observation wells would behave differently if the location
of the pumping well is changed since they could be influ-
enced by the heterogeneity near the new pumping well.
Therefore, drawdowns due to pumping at well A3 with a
screen interval at z¼ 0–4.0 m were used for validating esti-
mated parameters from Case 1 and Case 2.

[56] A homogeneous model which considers anisotropy of
the saturated hydraulic conductivity was also employed for
the validation (Case 3). The parameters of this homogenous
anisotropic field were obtained with SimSLE method which
includes anisotropy of hydraulic conductivity in the horizon-
tal and vertical direction (Kx¼Ky and Kz). With the same
data sets used in section 4.1, the estimated effective parame-
ters are Kx¼Ky¼ 8.54 � 10�3 m/min, Kz¼ 6.38 � 10�3

m/min, SS¼ 1.29 � 10�3/m, �¼ 3.33/m, and �S¼ 0.42.
[57] Figures 9a and 9d show the validation results for

Case 1 at early time (t¼ 10 min) and late time (t¼ 300
min), respectively. Each figure is a scatterplot of the true
total head versus the predicted total head at every node of

Figure 6. Distributions of residual variance for (a) KS, (b) SS, (c) �, and (d) �S.
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the entire domain (i.e., both unsaturated and saturated
zones). The performance criteria (L1, L2, and correlation
coefficient) are also presented in each figure. Similar plots
of the validation results for Case 2 are shown in Figures 9b
and 9e and for Case 3 in Figures 9c and 9f.

[58] According to Figures 9a–f and the performance met-
rics, the prediction based on the estimated parameters from

Case 1 and Case 2 are the best. It is hard to distinguish
between the results from these two cases, indicative of
minor impacts of spatial variability of the unsaturated pa-
rameters. As expected, the prediction based on the parame-
ters for an equivalent homogeneous medium is biased and
unsatisfactory. The predicted drawdowns are consistently
lower than the true drawdowns. This implies that the effec-
tive parameters estimated from all the data sets from the
pumping tests conducted at A1, A5, and A9 are not the
same as the effective parameters for the pumping test con-
ducted at A3. In other words, the effective parameters for
the equivalent homogeneous medium are scenario depend-
ent (varying with the geology near the pumping well) as
observed and discussed by Straface et al. [2007], Wen et al.
[2010], Huang et al. [2011], and R. Sun et al. (A temporal
sampling strategy for transient hydraulic tomography anal-
ysis, submitted to Water Resources Research, 2012, herein-
after referred to as Sun et al., submitted manuscript, 2012)
for pumping tests in confined aquifers. The complex spatial
distribution of the parameter cross correlation with the
head in the unconfined aquifers presented in the study by
Mao et al. [2013] further elucidates such a scenario-
dependent nature of the effective properties. Again, these
results reinforce the importance of joint interpretation of
sequential pumping tests in unconfined aquifers, and they
question the representativeness of those estimates based on
models that assume aquifer homogeneity.

4.5. Effects of Boundaries

[59] Applications of the HT algorithm to real-world aqui-
fers will likely encounter effects of geologic boundaries.
While an investigation of their effects is beyond the scope of
this study, we may discuss the effects based on the study of
by Sun et al. (submitted manuscript, 2012). In the joint analy-
sis of sequential pumping tests in 2-D depth-averaged con-
fined aquifers, they showed that if boundaries of no flux in the
true model were replaced with constant head boundaries, the
impermeable boundaries were identified as low conductivity
zones near locations of the boundaries. The estimated trans-
missivity and storage coefficients in other areas of the aquifers
remain the same as those based on the correct boundary
conditions. That is, effects of impermeable boundaries are

Figure 7. Estimated distributions of (a) KS and (b) SS

with known effective � and �S.

Figure 8. Scatterplots of the true versus estimated parameters (a) KS and (b) SS with known effective �
and �S. The red dots are the results for unsaturated part of the aquifer (6.7–9.0 m), and the blue dots are
the results for the saturated part (0–6.7 m).
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reflected in the head data, and the HT analysis based on Sim-
SLE can decipher them correctly. We believe this finding
holds for unconfined aquifers as well.

5. Conclusion

[60] In this study, we extended the SimSLE algorithm to
HT in variably saturated unconfined aquifers and then tested
the algorithm using numerical experiments. Results of the
experiments confirm the results of the cross-correlation analy-

sis between heads and aquifer heterogeneity during pumping
in unconfined aquifers by Mao et al. [2013]. That is, while
heterogeneity everywhere within the cone of depression influ-
ences head observations at a location during a pumping test,
heterogeneity near the observation and the pumping locations
has the greatest impacts. As a result, changing the pumping
or the observation location yields nonredundant information
about heterogeneity of the aquifer. Joint interpretation of a se-
quential pumping test or a multiwell interference test can thus
lead to a high-resolution unconfined aquifer characterization.

Figure 9. Scatterplots of the true versus the predicted total head at every node at early time t¼ 10 min
based on the estimated parameters from (a) Case 1, (b) Case 2, and (c) Case 3. The corresponding plots
for late time t¼ 300 min are shown in (d)–(f). The black and red dots in each figure are the locations in
unsaturated and saturated zones, respectively.
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[61] We show that the joint interpretation of the sequen-
tial pumping tests is capable of identifying the spatial dis-
tribution of KS in both saturated and unsaturated zones, the
distribution of SS in the saturated zone, and the spatial pat-
terns of � and �S in the vadose zone. More importantly,
these estimated parameters yield an excellent prediction of
temporal and spatial drawdown distributions created by an
independent pumping test. On the other hand, the estimated
effective parameters for the equivalent homogeneous
model of the conventional aquifer analysis yield biased and
unsatisfactory prediction of the drawdowns.

[62] Lastly, effects of the spatial variability of the unsat-
urated parameters on the identification of KS and SS are
found to be insignificant. Therefore, general knowledge of
mean values of � and �S for the entire aquifer is quite suffi-
cient for the estimation of the spatial variability of KS and
SS in the saturated zone.
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