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Abstract Hydraulic tomography (HT) has become a mature aquifer test technology over the last two
decades. It collects nonredundant information of aquifer heterogeneity by sequentially stressing the
aquifer at different wells and collecting aquifer responses at other wells during each stress. The collected
information is then interpreted by inverse models. Among these models, the geostatistical approaches,
built upon the Bayesian framework, first conceptualize hydraulic properties to be estimated as random
fields, which are characterized by means and covariance functions. They then use the spatial statistics as
prior information with the aquifer response data to estimate the spatial distribution of the hydraulic
properties at a site. Since the spatial statistics describe the generic spatial structures of the geologic
media at the site rather than site-specific ones (e.g., known spatial distributions of facies, faults, or
paleochannels), the estimates are often not optimal. To improve the estimates, we introduce a general
statistical framework, which allows the inclusion of site-specific spatial patterns of geologic features.
Subsequently, we test this approach with synthetic numerical experiments. Results show that this
approach, using conditional mean and covariance that reflect site-specific large-scale geologic features,
indeed improves the HT estimates. Afterward, this approach is applied to HT surveys at a kilometer-
scale-fractured granite field site with a distinct fault zone. We find that by including fault information
from outcrops and boreholes for HT analysis, the estimated hydraulic properties are improved. The
improved estimates subsequently lead to better prediction of flow during a different pumping test at
the site.

1. Introduction

Multiscale geologic heterogeneity is the rule rather than the exception. Both small-scale heterogeneity and
large-scale geologic structures or features (i.e., lithology or geologic strata, faults, folds, and lineations) can
significantly impact the flow field and produce anomalous hydraulic responses at the local scale [e.g.,
Ronayne et al., 2008].

It is well-known that geologic maps portray the spatial distribution of large-scale geologic features, and geo-
physical surveys can detect subsurface structures or anomalies [Soueid Ahmed et al., 2015]. Nevertheless,
information about such large-scale features often involves great uncertainty. For example, Brauchler et al.
[2007] showed that geophysical structures detected by seismic tomography do not agree well with hydro-
geologic structures identified by hydraulic tomography (HT). Likewise, geologic or geophysical logs are fre-
quently used for the construction of 3-D geologic conceptual models. These models are equally ambiguous
because they are built upon interpolation and extrapolation of local data from sparse boreholes [Poeter and
McKenna, 1995]. In addition, exact hydraulic property values of these large-scale geologic features are sel-
dom known. Consequently, our knowledge of large-scale geologic features is regarded as qualitative data in
hydrogeologic modeling efforts [Carrera et al., 2005; Grana et al., 2012].
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In spite of their qualitative nature, groundwater flow forward models often treat these large-scale geologic
structures (such as facies) as well-defined zones, and some ‘‘typical’’ hydraulic property values are assigned
to each zone according to its rock or sediment type. Equally, inverse models admit these ‘‘well-defined’’
geometries of the zones and then estimate the values of the hydraulic properties for each zone that repro-
duce observed aquifer responses [Hendricks Franssen et al., 2009]. In order to address the uncertainty of the
geometries, Eppstein and Dougherty [1996] suggested that the impacts of uncertainty in zone geometry can
be reduced by estimating the zonal properties and zonation simultaneously. While these approaches are
practical, they often yield unsatisfactory predictions of flow and solute transport [e.g., Konikow and
Bredehoeft, 1992; Meier et al., 2001; Ni et al., 2009; Huang et al., 2011].

Stochastic modeling approaches, on the other hand, adopt the stochastic conceptualization of heterogenei-
ty [Yeh et al., 2015a, 2015b]. They consider the hydraulic parameter of a field site as a random field, charac-
terized by a uniform mean and a covariance model. The mean represents the most likely values for the
properties of the entire field site, while covariance represents their likely deviations, and average dimen-
sions of these facies or zonal features. This general statistical description of a field site is then tailored to a
site-specific one by employing mathematical algorithms (such as kriging or inverse models) to condition
the random field such that it honors observed hydraulic properties or aquifer responses at observation loca-
tions. However, these stochastic approaches cannot fully recover the large-scale features with only hydraulic
observations from sparse wells [Meier et al., 2001]. As a consequence, geologic features (e.g., facies, zones,
faults, and karst conduits), which exhibit abrupt jumps of the hydraulic properties, are often smeared and
distorted in hydrogeologic inverse results [Tsai, 2006; Cardiff and Kitanidis, 2009].

Recently developed HT surveys (see reviews by Illman [2014], Cardiff et al. [2012], and Yeh et al. [2015a]),
which can provide high-resolution maps of the aquifer heterogeneity with a limited number of wells, also
suffer from these difficulties. Over the past years, many researchers have attempted to modify the initial
starting hydraulic parameter values and the regularization term in the inverse model to incorporate the
knowledge of large-scale geologic structures. For example, Soueid Ahmed et al. [2015] proposed the use of
structural information inferred from a guiding image to improve the estimates of hydraulic conductivity in
steady state HT. The guiding image can be obtained from the geophysical or geologic survey. The extracted
structural information is introduced as a weighted four-direction smoothing for regularization. The synthetic
experiments show that image-guided inversions are more accurate and yield results at a higher resolution
than those based on classical regularization models. The illustrative examples are 2-D cases, and simple het-
erogeneity with several zones (each zone assigned with one conductivity value) are considered. Although
the impacts of the inaccurate structure information or inaccurate mean are tested in the examples, quanti-
tative analysis of these uncertain factors is omitted.

Fienen et al. [2008] proposed an interactive Bayesian geostatistical inverse protocol for hydraulic tomogra-
phy based on quasilinear geostatistical approach (QLGA) [Kitanidis, 1995]. They show that explicit trade-off
between data misfit and the prior assumption is controlled by the ratio of the parameter variance and the
epistemic error, which is similar to the concept of dynamic stabilizer used in the Levenberg-Marquardt algo-
rithm [Pujol, 2007]. In order to handle discontinuities in the parameter field, Fienen et al. [2008] proposed an
interactive algorithm to select the thresholds for the zonation. Different zones with significantly different
mean values were characterized by the same prior covariance function, and this single covariance function
was modified so that two locations at different zones had zero correlation. Numerical tests revealed that
with zonation assumptions, the inversion obtained a better result than without zonation, which suffered
from the smoothing of the zone boundaries. However, the modified single covariance function based on
the assumption that all zones have the same variance and correlation structure may not be adequate to
characterize different variabilities in different zones of the geologic formations. Furthermore, the method
omits the uncertainty of the zone boundaries.

Cardiff and Kitanidis [2009] proposed a method for defining facies locations and boundaries using the level
set method and for moving the boundaries between zones using a gradient-based technique that improves
fitting through iterative deformation of the boundaries. The level set representation of facies boundaries is
flexible to deal with geologic facies in any shape, size, or number. While the proposed method is general in
handling facies-dominated problems, the parameter variability inside each facies was not considered. Also,
the variability of covariance function between different zones was not discussed.
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Tso et al. [2016] investigated the relative importance of prior information and different types of hydraulic
data (flux or drawdown) in HT survey. They concluded that when large-scale trend information is available,
the distributed mean and a simple covariance function using short correlation scales yield the best results.
The approach proposed by Tso et al. [2016] was subsequently validated by sandbox and field experiments
[Zhao et al., 2016; Zhao and Illman, 2017], and they found that the value of geologic information is most
useful when the numbers of pumping tests and monitoring points are sparse. The influence of unknown
zone boundary was also investigated in Tso et al. [2016] by smearing the true boundary with a sinusoidal
wave. However, using a simple covariance model with short correlation scale may not be suitable to
describe the situation when the zone boundary is not known exactly and the small-scale heterogeneity in
each zone differs from the others.

Previous works have highlighted the benefits of incorporating site-specific geologic structure information into
groundwater models when HT data are limited. However, quantitative incorporation of the site-specific infor-
mation by using more general mean and covariance function remains a challenge. Specifically, site-specific
geologic information often includes both structural geometries (i.e., the shape of facies and zones, etc.) and
their associated hydraulic properties (e.g., high hydraulic conductivity (K) and low K values). A general approach
to incorporate these two types of information into classical geostatistical approaches has not been fully
resolved. Furthermore, previous studies mainly focused on synthetic aquifers. Quantitative evaluation of the
impact of incorporating geologic information in three-dimensional field problems still needs to be explored.

This paper aims to present a general geostatistical framework to address the aforementioned issues. It is
organized as follows: in section 2, we review the Successive Linear Estimator (SLE) developed by Yeh et al.
[1996], Zhang and Yeh [1997], Hughson and Yeh [2000], Yeh and Liu [2000], and Zhu and Yeh [2005], which is
one of the algorithms for HT analysis developed in a Bayesian perspective (section 2.1). We then introduce a
general method to derive conditional mean and conditional covariance, which account for site-specific geo-
logic information (section 2.2). These mean and covariance can be used in HT analysis as prior information.
In section 3, we design two synthetic examples to demonstrate the proposed method and to investigate
the influence of incorporating site-specific geologic information on HT result. Section 4 presents a field HT
application of the proposed method, followed by conclusions in section 5.

2. Methods

A method of inverse modeling is required to identify parameter fields, such as the hydraulic conductivity
distribution, given a series of hydraulic responses collected during a HT survey. Derived in the Bayesian
framework, QLGA [Kitanidis, 1995; Fienen et al., 2009] and SLE [Yeh et al., 1996] are widely employed to inter-
pret HT data. Since groundwater flow inverse problems are in general nonlinear, iterative procedures are
involved in these two methods. SLE conceptualizes the iterative procedure as a sequence of Bayesian
updating steps and update both the mean and covariance of the parameter fields during iteration. In con-
trast, QLGA successively linearizes the forward problem about the current estimate, while keeping the cova-
riances [Nowak and Cirpka, 2004]. Despite the differences, the two widely used approaches share many
common features [Liu et al., 2014; Soueid Ahmed et al., 2015]. For instance, they both require the prior mean
and covariance of the parameter field, and they provide the uncertainty estimation besides the parameter
distribution. For completeness, we first review the SLE algorithm. Afterward, a general framework to con-
struct the prior mean and covariance (required inputs in SLE) based on geologic information is proposed. A
flowchart that summarizes the framework is provided in Figure 1.

2.1. Successive Linear Estimator (SLE)
Stochastic inverse models including SLE adopt a highly parameterized heterogeneous conceptual model,
which usually discretizes the 3-D domain of the field site into N elements. The hydraulic parameter of the N
elements (e.g., natural logarithm of K, lnK) is composed of a (N 3 1) vector. The model then considers these
hydraulic parameters as spatial stochastic processes (random fields) with prior (unconditional) mean
Y (N 3 1), and the prior perturbations y (N 3 1), respectively. These perturbations represent the spatial vari-
ability of the parameters.

SLE estimates the most likely parameter value (i.e., conditional effective value) for each element, given (con-
ditioned with) the observed drawdown (or head) data from the HT survey. Suppose during an HT survey,
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we have collected M observed heads in space and time, denoted by the data vector d. The estimates of
parameter fields, given the observation, is Ŷc (subscript c denotes conditional), are iteratively determined
using the following linear estimator [Yeh et al., 1996]:

Ŷ
r11ð Þ

c 5Ŷ
rð Þ

c 1xT d2G Ŷ
rð Þ

c

� �� �
(1)

where r is the iteration index; G(�) indicates the nonlinear relationship between Y and d (i.e., a forward
groundwater flow model), which produces the simulated heads at the observation locations and times
using the parameters obtained at iteration r. The coefficient matrix, x (M 3 N), denotes the weights, which

Figure 1. Flowchart summarizing the SLE inverse algorithm and the proposed method that provding the prior mean and covariance function for SLE.
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assigns the contribution of the difference between the observed and simulated head at each observation
location and time to previously estimated parameter values at each element. The superscript T denotes the
transpose.

The coefficient matrix x is determined by solving the following equation [Yeh et al., 1996]:

e rð Þ
dd 1R

h i
x rð Þ5e rð Þ

dy (2)

where R is the covariance matrix (M 3 M) of the measurement error associated with head measurements.
The solution of equation (2) requires the knowledge of covariance edd and cross-covariance edy, which can
be derived from the first-order numerical approximation [Yeh et al., 1996]:

e rð Þ
dd 5J rð Þ

d e rð Þ
yy J rð ÞT

d ;

e rð Þ
dy 5J rð Þ

d e rð Þ
yy

(3)

where Jd (M 3 N) is the sensitivity (Jacobian) matrix of head data with respect to the element-wise parame-
ter using the parameters estimated at the current iteration. At the beginning of iteration (when r 5 0), eyy is
the unconditional covariance matrix of parameters Y, which is traditionally constructed by a prior variance,
correlation lengths, and a covariance model (see section 2.1.3). After that (r�1), the residual or conditional
covariance function of parameters is updated as [Yeh and Liu, 2000]:

e r11ð Þ
yy 5e rð Þ

yy 2x rð ÞTe rð Þ
dy (4)

The SLE bears the concept of cokriging or stochastic linear estimator equation (e.g., unbiased estimates
with minimum variance). The nonlinearity between parameters and heads is dealt with successive iteration.
At iteration r 5 0, SLE requires guessed values for the mean (Ŷ

0ð Þ
c used in eqaution (1)) and covariance func-

tion (e 0ð Þ
yy used in equations (3) and (4)). In the view of Bayesian statistics, Ŷ

0ð Þ
c 5Yprior and e 0ð Þ

yy 5Cprior are the
prior information of the unknown parameter field. Afterward, SLE updates the mean and the covariance at
each iteration due to the gradual assimilation of the observation information, and reduces the uncertainty
of the estimate.
2.1.1. Maximum A Posteriori Approach
SLE is similar to the maximum a posteriori (MAP) inverse approach, but it is different. As pointed out by Car-
rera and Glorioso [1991], the cokriging equation produces the same estimate of the first iteration of maxi-
mum posterior approaches, if the initial guess mean is taken as the prior. Let p(Y|d) be the probability
density function (pdf) of model parameter Y conditioned on the data set d and p(Y) is the prior pdf. Bayes
theorem gives the pdf of model parameter Y after the assimilation of the data d [Fienen et al., 2009]:

p Yjdð Þ / p djYð Þp Yð Þ (5)

If the prior pdf p(Y) can be approximated as Gaussian with mean Yprior (N 3 1) and covariance Cprior (N 3

N), and the error in observation d (M 3 1) are normally distributed with zero mean and covariance R (M 3

M), equation (5) becomes

ln p Yjdð Þ / 2
1
2

G Yð Þ2dð ÞT R21 G Yð Þ2dð Þ1 Y2Yprior
� �T C21

prior Y2Yprior
� �h i

(6)

Using the Gauss-Newton method to minimize the objective function –ln p(Y|d), the (r 1 1)th iterative esti-
mate of parameter Y is [Chen and Oliver, 2013]:

Ŷ
r11ð Þ

c 5Ŷ
rð Þ

c 1 J rð ÞT
d R21J rð Þ

d 1C21
prior

� �21
J rð ÞT

d R21 d2G Ŷ
rð Þ

c

� �� �
1C21

prior Yprior2Ŷ
rð Þ

c

� �h i
(7)

with estimation covariance of

e r11ð Þ
yy 5 J rð ÞT

d R21J rð Þ
d 1C21

prior

� �21
(8)

Through several linear algebraic manipulations (see equations ((1).106) and (1.107) in Tarantola [2005]), we
have
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Ŷ
r11ð Þ

c 5Ŷ
rð Þ

c 1 Yprior2Ŷ
rð Þ

c

� �
1CpriorJ rð ÞT

d J rð Þ
d CpriorJ rð ÞT

d 1R
� �21

d2G Yð Þð Þ1J rð Þ
d Yprior2Ŷ

rð Þ
c

� �h i
(9)

e r11ð Þ
yy 5Cprior2CpriorJ rð ÞT

d J rð Þ
d CpriorJ rð ÞT

d 1R
� �21

J rð Þ
d Cprior (10)

By comparing equations (1–4) and equations (9) and (10), it is found that the calculated Ŷ
r11ð Þ

c and e r11ð Þ
yy

have the same forms in SLE and MAP formulations if we set initial guess mean Ŷ
0ð Þ

c as the prior Yprior. In oth-
er words, the first iteration of SLE and MAP yield the same estimated mean and covariance. However, after
the first iteration, SLE uses the updated mean (e.g., substituting Yprior by Ŷ

rð Þ
c in the equation (9)) and

updated covariance function (e.g., substituting Cprior by e rð Þ
yy in the equation (10)) as prior information. That

is, MAP uses static prior information, while SLE recursively updates the mean and covariance from the last
iteration as the prior (This is similar to Kalman filter in signal analysis, where new observation in time is
added). In other words, a posterior mean and covariance at iteration r serve as a prior at iteration r 1 1. The
logic behind this is that the inverse model gradually learns from observation data for every iteration, and
this changes the pdf of the uncertainty associated with the estimates at every iteration [Yeh et al., 1996; Yeh
and Liu, 2000].
2.1.2. Stabilizer Term
For solving the nonlinear problem, a stabilizer term is usually added to ensure the stability of equation (2):

e rð Þ
dd 1R1h rð Þdiagðe rð Þ

ddÞ
h i

x rð Þ5e rð Þ
dy (11)

The h is a dynamic stability multiplier, and diag(Edd) is a diagonal matrix with the same diagonal elements as Edd

[Dietrich and Newsam, 1989; Carrera and Glorioso, 1991; Yeh and Liu, 2000]. Mathematically, the dynamic stabilizer
term facilitates the solution switching between the Gauss-Newton solution and the steepest-descent method,
which is known as the Levenberg-Marquardt approach [Pujol, 2007]. The reason is that when the initial guess
values are far away from the true solutions for a nonlinear problem, the Gauss-Newton solution (without the sta-
bilizer term) may lead to the divergence of the solution if a full step is taken to update the parameters. From a
Bayesian perspective, the stabilizer term is similar to the concept of epistemic error for imperfect observations
[e.g., Fienen et al., 2008] and conceptual model error (e.g., inaccurate boundary conditions, inaccurate sensitivity
matrix evaluated at the estimated mean Ŷ

ðrÞ
c , which may be far away from true values). In order to prevent the

model from diverging due to these unpredictable errors from observation data or conceptual models, the stabi-
lizer is used to dampen the change of the prior parameter field. Since initially the guessed Y is far away from
true solution and tends to produce larger conceptual model errors, generally a larger h value is preferred initially,
and then the value decreases with iteration. Note that since R is usually unknown, it is often dropped in equa-
tion (11) and the stabilizer implicitly includes the data error. However, if a rough magnitude of error is known,
we can control the iteration process by either setting a minimal stabilizer term or by manually checking the mis-
fit of data to avoid overfitting problem [Xiang et al., 2009]. The misfit of data can be quantitatively evaluated by
different norms. Two criteria, the average absolute (L1) and the mean squared error (L2) norms are often used to
evaluate the differences between the observed and simulated heads:

L15
1
n

Xn

i51

jhi2h0 i j (12)

L25
1
n

Xn

i51

hi2h0 ið Þ2 (13)

where hi and h0 i represents the observed head and simulated head at location or time i, and n is the total
number of observations.
2.1.3. Prior Mean and Correlation Function
As discussed above, SLE and other Bayesian geostatistical methods require the knowledge of prior mean
and covariance function. The importance of the prior information is self-evident in Bayes theorem: if the
data is not sufficient to reproduce the true field, both prior mean and covariance serve as additional con-
straints and the choice of the prior matters.

Typically, a uniform (unconditional) mean value and unconditional covariance functions of a geologic mod-
el are used for Yprior in a geostatistical estimation approach (such as kriging, cokriging, SLE, or QLGA). The
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word ‘‘unconditional’’ implies that HT data have not been included yet, and only general information (such
as soil/rock types and average sizes of the blocks) is available based on a first glance of the site [Yeh et al.,
2015b]. This general prior information is then conceptualized by a general stochastic description of spatial
variability of parameters. For example, a single mean value and an exponential covariance function cov(r2,
L) can be used to describe the prior information:

Yprior x5xið Þ5m

Cprior xi ; xj
� �

5cov r2; L
� �

5r2exp 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2

L2
x

1
Dy2

L2
y

1
Dz2

L2
z

s !
(14)

where m is the mean, r2 is the variance, and L 5 [Lx, Ly, Lz]T are the correlation scales in different directions,
Dx 5 xi 2 xj is the vector defined by two points xi and xj in 3-D space. This is equivalent to state that before
any inverse modeling effort, we know the mean, variance, and general spatial structure of the geologic medi-
um. These are merely additional constraints in a statistical sense to the inverse problem [see Yeh et al., 2015b].

Note that the above unconditional mean and covariance represent the spatial statistics of all possible real-
izations of heterogeneous property fields, which include variability at all scales (i.e., those with or without
trends, nonstationary, or stationary fields) in a geologic medium [Yeh et al., 2015b]. The question then
becomes how to define the spatial statistics that tailor to realizations, which contain known, but imprecise
discrete large-scale structures (such as different geologic facies, folds, or faults) in the parameter field. More
importantly, how to incorporate them into inverse models becomes an issue as noticed by Fienen et al.
[2008] and Cardiff and Kitanidis [2009]. This issue becomes more critical when only sparse head data are
available. Below, we propose a general methodology for resolving this issue.

2.2. Incorporating Site-Specific Geologic Information
A general geostatistical approach based on sequential kriging is proposed to incorporate site-specific geo-
logic information into stochastic inverse models. This approach adopts a nested covariance function con-
cept for two-scale heterogeneity. In other words, geologic facies, sediment layers or stratigraphy, rock
types, or geophysical attributes from well logs, outcrops, or other surveys are viewed as large-scale proper-
ties, which can be conceptualized as a stochastic field characterized by a mean and a large-scale covariance
function, representing the generic spatial distribution of possible geologic facies in a geologic medium. The
interface between different facies or zones may exhibit an abrupt change of hydraulic properties. On the
other hand, the variability inside a particular facies or zone (compared to its large-scale mean) can be
described by a zero mean and a small-scale covariance function.
2.2.1. Nested Covariance Function for Multiscale Heterogeneity
Suppose geologic or geophysical well logs reveal some strata of gravel, sand, silt, and clay along boreholes
in a geologic medium and only ranges of their hydraulic properties are known. A sequential kriging method
can be used to include this soft (qualitative) information as prior information in inverse modeling. First, we
conceptualize the hydraulic parameter Y of the aquifer as a random field consisting of coarse and fine-scale
variabilities:

YðxÞ5UðxÞ1SðxÞ (15)

where U represents the random field observed at coarse scales (e.g., the average hydraulic property of
layers, stratifications, or facies). It can be decomposed into a mean and perturbation: UðxÞ5m1uðxÞ,
E½UðxÞ�5m, E½uðxÞ�50, and it is characterized by a spatial covariance function,

Cuu xi ; xj

� �
5cov r2

U; LU
� �

(16)

where r2
U is the variance of uðxÞ, and LU represents the spatial correlation scales of the coarse-scale proper-

ty. Likewise, SðxÞ denotes variation of hydraulic properties at the fine scale, which is superimposed on the
hydraulic property at the coarse scale. SðxÞ has a zero mean: E SðxÞ½ �50, and a spatial covariance function:

Css xi; xj

� �
5cov r2

S ; LS
� �

(17)

where r2
s is the variance of S and Ls are its spatial correlation scales, which are much smaller than LU . Since

small-scale heterogeneity is defined inside a particular zone or layer, different covariance functions of
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equation (17) with different variances and correlation scales can be assigned to different zones. Theoretical-
ly, the proposed concept could be expanded to include additional scales of heterogeneity.
2.2.2. Two-Level Material Grid and Geologic Information Conditioning
In order to implement such a two-scale variability, we discretize the medium into Nc number of coarse grids,
and each of the coarse grid contains many fine grids. As a result, there are Nc coarse grids and N fine grids
in the domain. The parameter value of each coarse grid is the mean of different parameter values of the
fine grids in the coarse grid. The variability of the coarse-grid parameter is described by its mean, m, and
covariance, CUU . The variability of the parameter of fine grids is modeled by the covariance, CSS. The param-
eters at fine grids (or the so-called material grid) dictate the resolution of the heterogeneity in our model.
Note that these material grids (to which parameter values are assigned) can be different from the numerical
meshes (for calculating state variable on the node) used in the finite element flow models.

The use of the coarse grid is for implementing the large-scale geologic information. Specifically, we assume
No coarse-scale ‘‘virtual’’ observations located at the centers of the coarse grids, xc

i , where i 5 1, 2, . . ., No,
and No�Nc (the total number of coarse grids in the domain). The number, locations, and the parameter val-
ues of virtual observations are assigned based on our qualitative knowledge of the geologic information.
Since the locations and values of the virtual observations are arbitrary based on user specification, they can
carry a wide variety of geologic information, such as K estimates from hydraulic tests, descriptions of rock
types from lithology, resistivity, density logs from few boreholes, sediment facies distribution from geologic
maps, and field observations of fracture/fault zones or caverns in the domain. The concept and implementa-
tion procedure of the virtual observation will be demonstrated using two illustrative examples in section 3.

Next, starting from an unconditional mean m, we construct the conditional mean field at the coarse grids
using kriging with the No virtual observations. For convenience, we define new variables, y 5 Y 2 m as the
perturbation at the fine grid, and u 5 U 2 m as the perturbation at the coarse grid. The kriging equation
(the linear stochastic estimator) is,

û xc
j

� �
5
XNo

i51

xij ~u xc
i

� �
(18)

where ~u xc
i

� �
is the virtual observation value for the coarse-grid property based on the translation of geolog-

ic or geophysical information at the observed location xi , and û xc
j

� �
is the kriging estimate at any location,

xc
j . Accordingly, the kriged estimates Ŷ at coarse grids will be û1m. The kriging estimate is our inferred

mean parameter distribution based on site-specific geologic information with the help of assigned virtual
observations. The kriging coefficients in equation (18) are calculated as,

XNo

j51

Cuu xc
i ; xc

j

� �
xik 5Cuu xc

i ; xc
k

� �
(19)

where i51; 2; � � �N0, k51; 2; � � �Nc . Afterward, the residual covariance of u is,

e0uu xc
i ; xc

j

� �
5Cuu xc

i ; xc
j

� �
2
XNo

k51

xki Cuu xc
k ; xc

i

� �
(20)

where i51; 2; � � �Nc , j51; 2; � � �Nc . This residual covariance, e0uu , represents possible deviations of the esti-
mate, û xc

j

� �
, from uðxÞ due to an insufficient number of virtual observations (i.e., No�Nc). It can be used to

describe the boundary uncertainty of zones that have different mean values. However, it should be noted
that the covariances e0uu and Cuu involved in equations (20) and (16) are most suitable for spatially continu-
ous random fields or a domain that consists of many facies, fault zones, caverns, or paleochannels where
ergodicity can be met. That is, in the field with only a few large-scale distinct zones, the spatial covariances
of the field (one realization) is not the same as covariances e0uu and Cuu in geostatistics, which are built upon
an infinite number of realizations [Yeh et al., 2015b]. Therefore, it is not surprising that the predicted mean
and uncertainty (equations (18) and (20)) via kriging may not be optimal when we compare the estimate
with the true field (one realization).

For a domain consisting of only a few individual discrete anomalies (site-specific discrete features), where
ergodicity is not met, we propose a new covariance function RU for the situation, when zone geometry is
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presumed. This RU is a covariance (Nc 3 Nc) denoting the deviation of the estimated parameter value, ~u,
from the true value u over a site-specific feature (or zone). Specifically, Ru xc

i ; xc
j

� �
is given as a positive con-

stant value if xc
i and xc

j are in the same zone, Xk and zero otherwise. Mathematically, it is

RU xc
i ; xc

j

� �
5

Ak xc
i 2 Xk ; xc

j 2 Xk

0 otherwise

(
(21)

where Ak �(0,r2
U) is a constant in zone k, and k 5 1, 2, . . ., NX, where NX is the total number of presumed

zones. According to equation (3), if eyy (covariance used in HT) is given as RU, we can conclude that edy(x0,
xj1) 5 edy(x0, xj2) when xj1 and xj2 are in the same zone (i.e., xj1 � Xk and xj2 � Xk). Equation (3) thus yields
the same cross-variance value for elements in the same zone, regardless of the sensitivity. This implies the
same weight in SLE (equation (1)) for locations in the same zone. In other words, this particular covariance
RU carries the information of zone geometry and it regularizes the inversion process to find the appropriate
mean K value for each zone. The property of RU is of great importance for many practical problems. For
example, geologic mapping or geophysical surveys of a field site may identify one or two large-scale geo-
logic features, which manifest as relatively high and low K zones in an area, but exact values of the hydraulic
parameters of these features are not known.

The large-scale residual covariance after the inclusion of site-specific geologic information is a combination
of e0uu (coarse-scale zone geometry uncertainty) and RU (mean distribution uncertainty under a presumed
zone geometry):

euu xc
i ; xc

j

� �
5e0uu xc

i ; xc
j

� �
1Ru xc

i ; xc
j

� �
(22)

These kriged mean (equation (18)) and large-scale residual covariance function (equation (22)) at coarse
grids are next mapped onto fine grids. The mean values of Y defined at elements are constructed by:

Ŷ xj

� �
5 û xc

i

� �
1m; xj 2 xc

i (23)

where xj without superscript c denotes the coordinates of the fine grids. The residual covariance of Y is the
summation of the large-scale covariance (euu) mapping to fine grids and the small-scale covariance (Css):

eYY xi; xj

� �
5euu xc

m; xc
n

� �
1Css xi; xj

� �
(24)

where xi 2 xc
m; xj 2 xc

n. As a result, the above approach considers the residual covariance eyy resulting from
three different sources: within layers’ fine-scale variability (CSS), error associated with the guess mean value
for coarse-scale properties under a presumed zone geometry (RU), and finally, uncertainty due to insufficient
coarse-scale information (e0uu). While the general concept of the above approach bears some similarities to
the work by Fienen et al. [2008] and others, it differs in both concept and the methodology and many other
aspects. More importantly, our proposed approach is general and can be applied to different cases as illus-
trated in the following examples.

It is noteworthy that the virtual observation concept is different from the well-known pilot point method.
For reducing computational cost and making the inverse problem well-defined [Yeh et al., 2015a, 2015b],
the pilot point method uses only a few selected pilot points, where hydraulic parameter values are estimat-
ed by a nonlinear algorithm minimizing the simulated and observed hydraulic head differences. The entire
parameter field is obtained afterward by kriging based on the parameter values at the pilot point locations
and the unconditional covariance function of the parameter [McLaughlin and Townley, 1996; Soueid Ahmed
et al., 2015]. That is, the final parameter field and the estimated parameters at pilot points are not linked by
the governing flow equation, and the result thus could be suboptimal [Huang et al., 2011]. In contrast, the
virtual points here are employed to incorporate large-scale geologic information, and the estimated mean
and covariance function for parameters at coarse grids then serve as the prior information for HT inversion.
In other words, the virtual points are only used in constructing the prior mean and covariance; they are
observations, not estimated parameters as are those in the pilot point method.
2.2.3. Extreme Examples That Account for Single Uncertainty Source
To better understand different sources of uncertainty (i.e., the covariances e0uu, Ru and CSS), we provide
some extreme examples that focus on a single source of uncertainty.
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1. Ru-dominated scenario. In some situations, the parameter field exhibits strong contrast between differ-
ent zones, and the heterogeneity within the zones is relatively minor (i.e., CSS�0). In addition, the zone
boundaries may be identified through a geophysical investigation [e.g., Soueid Ahmed et al., 2015]. In this
case, we place qualitative observations at every coarse grid such that the shapes of the geologic features
are known (e0uu 5 0), but the values of the hydraulic parameters of each feature are unknown. This
implies that one must guess the observation value, ~u, which likely will deviate from the true u. One
extreme, but commonly considered case is that ~u values are chosen to be zero, so that there is no infor-
mation about the large-scale mean (U), and the constant in Ru is equal to the ensemble variance. This
essentially leads to the zonation model [Zhou et al., 2014], in which the covariance Ru makes sure that
during parameter updating, the parameter updating increments for elements in one zone during inver-
sion are always the same, since every two of them have a correlation of 1.

2. e0uu-dominated scenario. This extreme scenario corresponds to the cases when partial large-scale zone
structures are unknown. For instance, the geologic stratification is obtained from several well logs. The
zone spatial distribution has to be interpolated and it involves uncertainty. As a result, the elements of
e0uu are large for uncertain boundary locations. Suppose Ru and CSS are small, the uncertainty will be
dominated by e0uu . A similar case is considered by Cardiff and Kitanidis [2009], who used a gradient-based
method to optimize the unknown facies boundary.

3. CSS-dominated scenario. This scenario represents the cases where the mean values of hydraulic proper-
ties of large-scale layers are known (i.e., Ru 5 0) as well as their distributions (i.e., e0uu 5 0). While the over-
all spatial mean and covariance of y at fine grids is m and a nested covariance CYY, the mean of each
layer will be Ui for layer i if the geologic information is included. At the same time, the residual covariance
of y at fine grids becomes CSS, with smaller variance and correlation scales. Such prior information has
been utilized in HT analysis by Tso et al. [2016].

In real-world cases, CSS, RU, and e0uu likely exist at the same time. The proposed method is therefore more
general, since it accounts for the three uncertainty sources simultaneously.

In order to further demonstrate and fully assess the proposed method, we next apply it to synthetic experi-
ments, where exact large and small-scale K distributions are known exactly. Afterward, the proposed meth-
od is applied to a field problem, where a large-scale low permeability fault zone exists at a fractured granite
site.

3. Synthetic Experiments

In this section, we use two synthetic numerical examples (i.e., examples 1 and 2) to demonstrate how site-
specific geologic information (large-scale geologic pattern) is implemented through an initial mean parame-
ter field and covariance functions in SLE, and to investigate how they affect the results of HT analysis. In
example 1, we examine geologic media with relatively continuous large-scale patterns without distinct fea-
tures. Example 2 is the case where a discrete feature (e.g., karst caverns or a large fault zone) exists.

3.1. Example 1
This synthetic example uses steady state HT to estimate the K distribution in a 2-D vertical sectional rectan-
gular confined aquifer (45 m in length and 18 m in height), with a two-scale heterogeneous K field (Figure
2a, the reference K field). To generate this field, first, we discretize the aquifer into 15 3 18 coarse grids (3 m
3 1m) and they are assigned with K values of a random field generated with a mean of 0.58 m/d, a lnK vari-
ance of 1, and a horizontal correlation scale of 40 m and a vertical scale of 4 m with an exponential covari-
ance function (i.e., CUU). A clustering method (i.e., k-means algorithm) [Elsheikh et al., 2013] is subsequently
applied to classify the K field into three types (facies) with mean lnK values U1 5 23.0 (facies 1), U2 5 21.0
(facies 2), and U3 5 1.0 (facies 3), as illustrated in Figure 2b. The facies map of the three types is shown in
Figure 2c. The distribution of the three facies will be used in the following HT as our reference large-scale
geologic pattern (or facies). Afterward, the aquifer is divided into 60 3 36 fine grids of 0.75 m 3 0.5 m in
size. The K value of each fine grid is generated using zero mean, variance of lnK 5 0.2 with correlation scales
6 m and 0.6 m in horizontal and vertical directions, respectively. Again, an exponential covariance function
is used and it is denoted as CSS. These fine-grid K values are then added to the K field of coarse grids (the
large-scale trend) to construct the true K field (Figure 2a).
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(h) kriged mean for V−b
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(f) zonal mean for IV−a
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(g) Zonal mean for V−a
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Figure 2. True field, large-scale trend, presumed facies geometry, and mean values used in example 1. The color indicates parameter value or facies number. (a) The true field Y. (b)
Large-scale heterogeneity defined on the coarse grid. (c) The true zone geometry used in case II. (d) The kriged mean used for case IV-b. Kriging is based on the observations along the
three boreholes without measurement error. (e) Guessed zone geometry (based on the kriged mean field) used in case III, IV, and V. (f) The zonal mean used for cases III and IV-a. (g) The
zonal mean used for case V-a with an additional error. (h) The kriged mean used for case V-b, which is similar to Figure 2c with an additional error for kriging observations.
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The HT test used in this example consists of three wells (Figure 2), and pumping is conducted at depths of
4, 8, 12, and 16 m of the wells. During each pumping test, steady state heads are collected at depths of 2, 4,
6, 8, 10, 12, 14, and 16 m in the three wells (excluding the pumping location). Thus, there are 12 tests and
23 observations in each test. We assume that the K values of the coarse grids and facies types along the
three boreholes are known (with or without error).

Case I. This case represents the situation where HT interpretation uses a uniform mean (0.58 m/d) and the
covariance CSS 1 CUU as prior information (i.e., initial K field and its spatial structure). That is, we know only
the generic information, but do not know any site-specific large-scale structure pattern, or facies distribu-
tion. The estimated K field is displayed in Figure 3a and its comparison with the reference K field is shown
in the scatterplot in Figure 4a.

Case II. In this case, two scenarios (case II-a and case II-b) are considered. Both scenarios assume that the ini-
tial mean does not recognize the site-specific mean trend (distribution of low K and high K) and thus it uses
the overall uniform mean (m 5 ln(0.58)). However, the exact site-specific zone geometry of the reference
field is implemented using covariance RU (equation (21)), rather than the generic covariance Cuu (i.e., it is
set zero). That is, based on the true facies distribution (Figure 2c), three different values, A1, A2, and A3 are
assigned to facies 1, 2, and 3 respectively, to form this RU . Ak is calculated based on the difference between
assigned mean (m) and the zonal mean (Uk), i.e., Ak 5 (Uk 2 m)2, where k 5 1, 2, and 3. The actual values will
affect the HT uncertainty estimation, but they play no role in the K estimate since it only depends on the
spatial correlations, which are always ones and zeros in RU. In addition to this RU , Case II-a does not consider
the covariance function of fine-grid properties, but case II-b does. In other words, eYY 5RU is used in case II-
a, and eYY 5CSS1RU is used in case II-b. Figures 3b and 3c show the estimated K fields, and their compari-
sons with the reference K field are shown in the scatterplots in Figures 4b and 4c.

In case III, the site-specific large-scale pattern is estimated using coarse-grid K values along the three bore-
holes. Specifically, using these K values and CUU, kriging is employed to derive coarse-grid K values over the
entire domain (Figure 2d). These K values are then converted to three patterns with different mean K values

(b) Case II-a(a) Case I

(d) Case III-a (e) Case III-b (f) Case IV-a

(g) Case IV-b (h) Case V-a (i) Case V-b

K (m/d)

3.62E+00
1.90E+00
1.00E+00
5.25E-01
2.76E-01
1.45E-01
7.61E-02
4.00E-02

(j) True K

(c) Case II-b

Figure 3. True K and estimated K fields from the nine scenarios of example 1.
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(Figure 2e), and three facies distributions (see Figure 2f) are defined according to their means. The generat-
ed distribution of the three facies is treated as our guessed large-scale pattern, and it is used to form a
guessed RU (denoted by R̂U). This R̂U (with incorrect zone geometry) is different from the true RU used in
case II-a and case II-b (correct zone geometry).

In case III-a, we implement the large-scale spatial pattern using R̂U , and let eYY 5R̂U as the initial covari-
ance to conduct HT analysis. On the other hand, in case III-b, we include the covariance of the fine
grids and use eYY 5CSS1R̂U . Both case III-a and case III-b also use the uniform mean of the true field
(0.58 m/d) as the initial mean K: it does not recognize any large-scale spatial pattern. The estimated K
field is displayed in Figure 3d and its comparison with the reference K field is shown in the scatterplot
(Figure 4d).

Figure 4. Scatterplots of true lnK versus estimated lnK in the nine scenarios of example 1. The darker color indicates a higher density of the scatters.
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Next, we examine the case IV-a in which the initial mean K field is dictated by the incorrect facies distribu-
tion with correct mean K values for each facies type (thus, RU5 0) (Figure 2e), and the initial covariance only
recognizes covariance of fine grid K. That is, CSS is used as the initial covariance eYY for SLE. We also examine
case IV-b in which the kriged mean K field (Figure 2d) is used as the initial mean K field, which is different
from the true large-scale mean (Figure 2b). The covariance eYY 5e0UU1CSS is employed in case IV-b for SLE.
Figures 3f and 3g show the estimated K fields and their comparisons with the reference K field are shown in
the scatterplots in Figures 4f and 4g.

In the last part of this example, case V-a uses the incorrect facies pattern for the initial mean K field as that
in case IV-a, and assigns incorrect K values (U1 5 22.0, U2 5 20.5, and U3 5 0.5) for each facies (see Figure
2g). On the other hand, case V-b employs kriging to derive an initial mean K field similar to case IV-b, but it
considers errors of the observations. This initial mean K field is illustrated in Figure 2h. Accordingly, case V-a
uses eYY 5CSS1R̂U as the initial covariance, and case IV-b uses eYY 5e0UU1CSS1R̂U . Figures 3h and 3i show
the estimated K fields and their comparisons with the reference K field are shown in the scatterplots in Fig-
ures 4h and 4i.

Examination of Figures 3 (estimated K field distributions) and 4 (scatterplots and associated performance
statistics) shows that case II-b yields the best estimated K field. That is, using the covariance function (i.e.,
eYY 5CSS1RU) that reflects the true site-specific spatial pattern and recognizes spatial variability at the fine-
grid, HT interpretation with SLE can lead to best estimates, in spite of the fact that the initial mean K field
ignores the spatial pattern.

The runner-up is case II-a, which uses similar initial mean and covariance information as that in case II-b, but
ignores the fine-grid covariance CSS. The third place belongs to case IV-b according to all performance sta-
tistics. This is the case which uses the kriged mean K field based on accurate coarse-grid K values of the
observations along the three boreholes as the initial mean K field. Accordingly, the covariance becomes
eYY 5e0UU1CSS. The performances of the rest cases are in the following orders: case V-b, case IV-a, case V-a,
case III-b, and lastly case I. Case IV-b and case V-b perform almost equally well and they do better than case
III-b and case I.

These results show an interesting outcome. That is, using an initial covariance that reflects the correct
site-specific large-scale pattern and fine-grid variability as prior information, SLE (or any Bayesian inverse
model) can yield the best estimate in spite of the initial mean K field in the HT analysis. On the other
hand, when these pieces of site-specific large-scale information are qualitative or imprecise, the results
suggest that one uses directly or indirectly obtained K values and the kriging tool to derive the most likely
large-scale K distribution and the associated residual covariance. Then, one should use this kriged K field
and its residual covariance plus the fine-grid covariance in HT analysis such that it can lead to satisfactory
results.

Overall, the site-specific covariance for the correct large-scale structure pattern is an additional constraint,
which is more important than the initial mean K field. The proposed generalized geostatistical approach is
versatile and valid, and it is a useful method for implementing the site-specific large-scale pattern when it is
available.

3.2. Example 2
This example is to further strengthen the findings in example 1. Here, we consider a two-
dimensional, rectangular synthetic confined aquifer (1000 m 3 880 m), which is discretized into uni-
form elements with dimensions of 10 m in length and 8.8 m in width. The HT test consists of nine
pumping tests at nine wells (white circles in Figure 5), and during each test, steady state heads are
collected at the other eight wells. The reference synthetic K field is presented in Figure 5j, which con-
sists of a distinct Z-shaped zone with a uniform low K value (K2 5 0.01 m/d, denoting mean K of
large-scale structure #2), surrounded by a high K zone (K1 5 1 m/d, denoting mean K of large-scale
structure #1). The high K zone is heterogeneous, described by an exponential covariance with isotro-
pic correlation scale of 80 m and variance of Y 5 1. The overall mean m 5 0.95 m/d, large-scale vari-
ance r2

U 5 0.9, and correlation scales LU 5 300 m are used in the calculation. It should be noted that
since the ergodicity condition is not met in this example, the large-scale covariance used here is not
representative (see explanation in section 2.2.2).
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(a) Case I (b) Case II-a (c) Case II-b

(d) Case III-a (e) Case III-b (f) Case IV-a

(g) Case IV-b (h) Case V-a (i) Case V-b

K (m/d)

2.0E+01
1.2E+01
7.4E+00
4.5E+00
2.7E+00
1.6E+00
9.9E-01
6.0E-01
3.7E-01
2.2E-01
1.3E-01
8.2E-02
5.0E-02
3.0E-02
1.5E-02
9.0E-03

(j) True Field

Figure 5. True K and estimated K field from the nine scenarios of example 2.
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Similarly, nine scenarios are considered to investigate different prior models (in terms of mean and covari-
ance) on HT estimates (see Table 1). In case I, SLE uses the uniform mean K value and the two-scale covariance
function, without including site-specific information, to estimate the detailed K distribution. Next, using the
uniform mean K value, we investigate the effect of RU in case II-a. Afterward, we use the uniform mean K value
and both the RU and CSS in case II-b. With the same goals as those in scenarios case II-a and case II-b, case III-a
and case III-b use incorrect site-specific covariance R̂U instead of RU . Case IV-a and case IV-b investigate the
effect of incorrectly distributed true large-scale mean values. In contrast, scenarios case V-a and case V-b con-
sider the error of the mean in the low K zone (low K zone value 5 0.1 m/d compared to the true value 0.01 m/
d). The virtual observations, large-scale grid (100 m 3 88 m), kriged mean, and variance are provided in the
supporting information Figure S1. The estimated K fields from different cases are plotted in Figure 5 and the
scatterplots of simulated K versus true K of different scenarios are presented in Figure 6.

3.3. Summary of the Results of Examples 1 and 2
In summary, in both examples, a comparison of case I, case II-a, and case II-b, in which an initial uniform
mean K field is used, demonstrates that inclusion of correct site-specific zone geometry information using
covariance RU 1 CSS has significant advantages compared to that using the generic large-scale covariance
CUU . It maps both small-scale variability as well as large-scale distinct features rather clearly (e.g., case II-b in
Example 2; Figure 5c). Results of case III-a and case III-b in both examples show that inclusion of CSS still can
improve the overall estimates even if the site-specific covariance R̂U is incorrect.

Under the condition of unknown zone geometry and correct virtual observations (case IV), using the kriged
mean and covariance (e0UU) yields a better result than the unconditional case (case I). Again, comparing
case IV-a with case IV-b suggests that CSS is helpful to identify small-scale features. In case V, the site-
specific spatial patterns are the same as those in case IV, but their K values are incorrect due to measure-
ment errors or indirect information about the hydraulic parameter. As expected, the additional error of the
virtual observations in case V worsens the results compared to case IV, but it is still better than that of case I
(without site-specific information). This indicates that inclusion of error-corrupted site-specific information
(zone geometry and mean trend) can still improve HT results as long as its different uncertain sources are
considered appropriately. One negative example is shown in cases II-a and III-a (Figures. 6b and 6e), where
the results are much worse than unconditional case I (Figure. 6a) due to inappropriate ignorance of fine-
grid variability (CSS). As indicated in Table 2, these scenarios that ignoring CSS (II-a and III-a) often leads to
bad quality of the head calibration. It is worthwhile to notice that including e0UU (the kriging variance of the
coarse-grid parameter, representing uncertainty in the boundary of different facies or the distinct features)
improves the K estimate in cases IV and V in example 1 (e.g., Figures. 4h and 4i). However, adding this term
e0UU does not necessarily improve the estimate in example 2 (see Figures. 6h and 6i). This result may be
attributed to the fact that e0UU , based on the generalized geostatistical concept, is not appropriate for
addressing uncertainty associated with discrete objects. That is, ergodicity is not met in this case (see expla-
nation in section 2.2.2).

Table 1. Nine Scenarios Considering Different Inputs of Prior Information (Mean and Covariance)

Case Scenario Figure Zone Geometry Mean Covariance

Ia Figures 3a, 4a, 5a, 6a NA Uniform CUU1CSS

IIb a Figures 3b, 4b, 5b, 6b True Uniform RU

b Figures 3c, 4c, 5c, 6c True Uniform CSS1RU

IIIc a Figures 3d, 4d, 5d, 6d Guessed Uniform R̂U

b Figures 3e, 4e, 5e, 6e Guessed Uniform CSS1R̂U

IVd a Figures 3f, 4f, 5f, 6f Guessed Zonal mean CSS

b Figures 3g, 4g, 5g, 6g Guessed Kriged mean e0UU1CSS

Ve a Figures 3h, 4h, 5h, 6h Guessed Zonal mean with error CSS1R̂U

b Figures 3i, 4i, 5i, 6i Guessed Kriged mean with error e0UU1CSS1R̂U

aUsing generic mean and covariance without site-specific information.
bUsing true zone partition information and uniform mean.
cUsing guessed zone partition (which is not the same as the true one) without consideration of possible boundary error and uniform

mean.
dUsing guessed zone partition. When possible boundary error is not considered, the covariance set e’uu 5 0 and zonal mean values

are used. Otherwise, e’uu is included and kriged mean values are used.
eThis is similar to case IV except that the mean value information contains errors.
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The two examples show that HT using the conditional mean and (residual) covariance derived from our
generalized geostatistical framework consistently yields better result in different scenarios. It should be not-
ed that the presented cases (cases II, III, IV, and IV) can be regarded as special scenarios under the general

Figure 6. Scatterplots of true lnK versus estimated lnK in the nine scenarios of example 2. The darker color indicates a higher density of the scatters.

Table 2. L2 Norms (m2) of Simulated Head (Calibration Quality) for the Two Synthetic Cases

Case\Scenario I IIa IIb IIIa IIIb IVa IVb Va Vb

Case 1 0.04 0.27 0.01 2.18 0.02 0.01 0.00 0.01 0.00
Case 2 0.00 0.18 0.00 0.23 0.00 0.00 0.00 0.00 0.00
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framework of our proposed approach. For instance, if site-specific large-scale zone geometry from geologic
mapping or geophysical surveys is available, zonal mean and residual covariance eYY 5CSS1RU or eYY 5CSS1

R̂U are used (cases II-b, III-b, and V-a). Implicitly, these cases place virtual observations on all the coarse grid
and thus e0UU 5 0. Under the circumstances where site-specific zone distributions are not available, the pro-
posed approach allows us to estimate the large-scale pattern using kriging with observations from well logs
(case IV-b in example 1, see Figure 2d) or user-specified locations (case IV-b in example 2, see supporting
information Figure S1f), and the derived conditional mean field and covariance eYY 5e0UU1CSS are used in
HT. If the inaccuracy of mean values is considered besides the inaccurate site-specific spatial pattern, the
proposed approach again uses kriging (case V-b in examples 1 and 2) and derives the conditional mean
fields and the residual covariances (eYY 5e0UU1CSS1R̂U). The proportion of R̂U in eYY depends on the error
involved in the virtual observations assigned by the users.

4. Field Application

In this section, we will apply the proposed approach to a field situation. Since the true field is not known,
the estimated fields based on different prior information will be assessed via model validation. That is, the
predictions of an independent test (which is not used in the inversion, or HT calibration) using different esti-
mates are compared with field observed heads.

4.1. Description of the Field Site and Pumping Tests
During the past decade, Japan Atomic Energy Agency (JAEA) installed several vertical and inclined bore-
holes over an area of several square kilometers at depths of up to 1 km to characterize the hydrogeology
near the Mizunami Underground Research Laboratory (MIU) site in central Japan. The site is situated in a
fractured and faulted granite formation. A detailed description of the MIU site geology can be found in Sae-
gusa and Matsuoka [2011]. According to Saegusa and Matsuoka [2011], geologic investigation suggested
the existence of a prominent fault zone (flow barrier) that runs through the MIU site oriented North-North-
West designated as fault IF_SB3_02 (Figure 7). The boundary between the Hongo Formation (AK/HG in) and
the Toki Lignite-bearing Formation (TK) is also interpreted to be a flow barrier. Toki Granite, which underlies
the Toki Lignite-bearing formation is highly fractured at depths between 300 and 500 m at MIU site.
Beneath the highly fractured unit (upper highly fractured domain: UHFD) is a granitic body which is less
fractured (lower sparsely fractured domain: LSFD), and is known to extend to great depths (Figure 7). How-
ever, the detailed hydrogeologic characteristics of these lineaments and faults are largely unknown.

At and around MIU site, nine vertical and slanted boreholes (MIZ-1, DH-2, DH-15, MSB-1, MSB-3, 10MI22,
05ME06, 07MI08, and 07MI09, see Figure 7 for their spatial locations) have been drilled, which have served
as pumping or observation boreholes during the MIU site characterization effort. MIZ-1 penetrates to a
depth of 1300 m, DH-15 is about 1000 m deep, DH-2 is about 500 m in depth, and the other boreholes are
shallow boreholes with lengths between 100 and 200 m. DH-15 is situated approximately 500 m southeast
from the MIU site. In contrast, the average distance between the off-site borehole DH-2 and all the other
on-site boreholes are less than 200 m. Furthermore, when pumping at borehole 10MI22 (test 4, which will
be introduced later), the newly added observation boreholes (05ME06, 07MI08, and 07MI09) are spaced less
than 50 m around the main (MS) and ventilation shafts (VS) as shown in supporting information Table S1.

Three independent pumping tests (namely, tests 1, 2, and 4) were conducted at borehole MIZ1 and 10MI22,
specifically for characterizing the hydrogeology of the site. In addition, during the course of excavation of
the two vertical shafts (MS and VS), pumping at the shafts was administered to drain groundwater, which
will be called test 3. Pumping locations of these four tests are shown in Figure 7. The observation boreholes
were instrumented with multilevel monitoring systems. The pumping rates, durations, and observation
boreholes and intervals associated with the four tests are listed in supporting information Table S2.

Test 1 was conducted from 14 to28 December 2004, at depth intervals of 191–226 m below the land surface
along MIZ-1. The pumping location of test 2 was at a deeper depth interval (662–706 m) of the same bore-
hole, and pumping test lasted from 13 to 28 January 2005. During these two tests, drawdowns were
recorded in all observation intervals of boreholes DH-2, DH-15, MSB-1, and MSB-3.

Test 3 consisted of dewatering from the two shafts and responses were monitored at several depths along
borehole MIZ-1 as well as at observation locations for tests 1 and 2. During the excavation of the shafts,
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water is being drained out from the two shafts, thus the process is treated to be a pumping test with mov-
ing pumping interval.

During test 4, the pumping was conducted at the horizontal borehole 10MI22, which is 304 m below the
surface and the pumping test started from 11 August 2010, lasting until 9 September 2010. Drawdowns at
three additional boreholes (05ME06, 07MI08, and 07MI09) were monitored in addition to all previous obser-
vation locations. It was noticed that the continuous drainage from the shafts has created a large cone of
depression, and has influenced the responses for test 4. Nevertheless, the rates of decrease in heads at all
the observation intervals due to dewatering at the shafts were almost constant prior to test 4, since the
drainage has been on-going for 4 years, reaching a quasi-steady state. Therefore, the estimated drawdown
trends induced by the drainage of the shafts based on data prior to test 4 were removed from the
drawdown-time data observed during test 4 (see details in supporting information). By doing this, we
treated test 3 and test 4 as two independent tests.

4.2. Description of Hydraulic Tomography Analysis
The drawdown data from pumping tests 1 and 2 were analyzed by [Illman et al., 2009], and the data sets
from tests 1, 2, 3, and 4 were later analyzed by Zha et al. [2015, 2016]. Both analyses did not consider known
geologic structure information as prior information for their HT analysis. They started with a spatially uni-
form mean values of K 5 0.01 m/d and Ss 5 2.3 3 1026 1/m as well as an exponential covariance function
with anisotropic correlation scales (i.e., 50, 50, and 25 m in x, y, and z directions for both K and Ss) while the
variances were set to 2.0 for lnK and 0.5 for lnSs. Results of Zha et al. [2015, 2016] demonstrated that the

Figure 7. Geology, pumping locations, and observations intervals of MIU site. The locations of boreholes as well as the main shafts (MS) and ventilation shafts (VS) are shown. Pumping
and observation intervals are indicated by spheres and the dash-dot lines approximately delineate the contact among various geologic units.
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inclusion of tests 3 and 4 increased the resolution of the estimated fracture zones and low-permeable fault
zone, in particular the location, which seemed to agree with the general location observed through geolog-
ic investigation. However, the estimated low K zone is in a complex shape, indicating small-scale heteroge-
neity in the fault zone.

Based on the outcrop information of the fault and boreholes logs, the location and the orientation of the
fault at the site are generally certain. The fault zone has been reported as a regional flow barrier. Illman
et al. [2009] and Zha et al. [2015] have estimated that the fault zone has an average K of 0.003 m/d, approxi-
mately one order of magnitude lower than the K value of the matrix.

To implement this information (both structure and mean trend information) using our proposed approach
for the following HT analysis, the fault and the matrix, as well as unknown fractures are considered as two
distinct zones. In this case, we directly utilize the zone structure information without consideration of its
uncertainty based on two reasons. First, the location and orientation of the fault zone are well constrained
by the previous geologic survey. Second, as demonstrated in example 2, the benefit of including the bound-
ary uncertainty is marginal if there are only several distinct zones, since small-scale heterogeneity (Css) can
compensate the incorrect mean due to wrong zone partition. Thus, here we assume that e0uu 5 0. The kriged
mean Y are assumed to be 0.003 m/d in the fault zone and 0.01 m/d in the matrix zone. Different means
(0.001, 0.003, and 0.01 m/d) for the fault zone have been tried. The results indicate that the former two
(0.001 and 0.003 m/d) produce similar predictions (see results below), but the latter one yields unimproved
results (not shown here). To construct Ru, A2 5 0.05 is assigned for the fault zone and A1 5 0.5 is set for the
other zone, since the mean is relatively uncertain. These values are based on the residual variances of the
HT inversion by Zha et al. [2015, 2016]. Moreover, CSS is also constructed so that the heterogeneity inside
the two zones are allowed. We assume a small-scale variance r2

1 5 0.5, isotropic correlation scale L1 5 20 m
in both the matrix and fractures, and r2

2 5 0.05 as well as an isotropic correlation scale L2 5 50 m in the low
K fault. For Ss, we start with a uniform mean (2.3 3 1026 m21) and variability of lnSs is described by a single
covariance function with a variance of 0.5 and an isotropic correlation scale of 50 m. The mean and residual
covariance used here is analogous to those used in case V-a of example 2.

4.3. Results of HT Analysis
To evaluate the effects of the proposed approach, test 4 is deliberately excluded from the inversion to
serve as an independent test for the validation of HT estimates. That is, only data from tests 1 and 2 are
used for HT inversion in the first two cases (Figures 8a and 8b), and the second two cases (Figures 9a
and 9b) use data from tests 1, 2, and 3. Although both K and Ss are estimated in these cases, our discus-
sion focuses on the resultant K estimates only since the estimated K and Ss are moderately negatively
correlated [Illman et al., 2009]. The estimated Ss fields are provided in the supporting information
section.

Figure 8a presents the estimated 3-D K distribution using data from tests 1 and 2 with a single covari-
ance function and uniform means as prior information [see Illman et al., 2009; Zha et al., 2015, 2016]. It
depicts the isosurfaces of the high and low K zones, and the contour K map of three horizontal slices
(corresponding to the depths of tests 1, 4, and 2) are displayed in Figure 8c. As discussed in Illman et al.
[2009] and Zha et al. [2015], the locations of tests 1 and 2 are on the same side of the low-permeability
fault. The estimates reveal only one high K zone that connects DH-15 and MIZ-1 (borehole for tests 1
and 2). The low K zone spreads over a wide area including the upper parts of MSB-1, MSB-3, the shafts,
and borehole DH-2.

Figure 8b illustrates the estimates using the same data set as that in Figure 8a, except that the geologic
knowledge of the fault location is incorporated by our proposed approach as prior information during
HT analysis. It shows that the high K zone, which connects DH-15 and MIZ-1, remains largely unchanged
as in Figure 8a. Nevertheless, the shape of the low K zone is altered significantly as illustrated in Figures
8b and d. This zone stretches out horizontally and vertically to become a fault plane, which is quite dif-
ferent from that in Figure 8a. The majority of the presumed fault zone via prior information remains,
since the groundwater response observations are sparse and only two tests are available; they are not
able to override the prior information. As a consequence, the resultant low K zone is much sharper than
that in Figure 8a.
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Figure 8. K estimates using data from tests 1 and 2 (a) without or (b) with prior knowledge of the low permeable fault. (c) And (d) are three slices from 3-D estimates in Figures 8a and
8b, respectively. Both estimates show that the pumping locations of tests 1-2 (upper and lower intervals of MIZ-1) are connected to borehole DH-15 but are isolated from boreholes DH-
2. The location of test 4 (10MI22 in B-B, not used in the inversion) is connected to DH-15 in (b) and less connected in Figure 8a.
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Figure 9. K estimates using data from tests 1, 2, and 3 (a) without or (b) with prior knowledge of the low permeable fault. (c) And (d) are three slices from 3-D estimates in Figures 9a
and 9b, respectively. Both estimates show that the pumping locations of tests 1-2 (upper and lower intervals of MIZ-1) are connected to borehole DH-15 while boreholes DH-2 is
connected to the two shafts (test 3). The location of test 4 (10MI22 in B-B, not used in the inversion) is not connected to DH-15 in Figure 9a but connected in Figure 9b.
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HT inverse results based on data from tests 1, 2, and 3 with a uniform mean and a single covariance as prior
information are illustrated in Figure 9a and the K contour maps of associated three horizontal slices are dis-
played in Figure 9c. One significant difference between Figures 8 and 9 is that the new result reveals a new
high K zone that connects DH-2 and the two shafts. This finding is attributed to the fact that test 3 was con-
ducted on the other side of the fault compared to tests 1 and 2 [Zha et al., 2015]. Due to this additional non-
redundant data, the estimated low K zone becomes narrower between DH-2 and MIZ-1 at some depths.
However, as illustrated in B-B horizontal slices in Figures 9c, the pumping location of test 4 (10MI22, which
is not used in the inversion), now is located in the low K zone.

On the other hand, employing the geologic knowledge of the fault location as prior information, the inverse
results (Figures 9b and 9d) reveal that 10MI22 is connected to DH-15. This refinement may not be significant
in the kilometer-scale view of the K estimates, but it has a great impact on the validation results of test 4,
since it changes the connectivity or lack of it between the new pumping location and other observation
intervals.

The above results in Figures 8 and 9 indicate that both HT data and prior information impact the final esti-
mates. This is consistent with the Bayesian nature of SLE algorithm used in the inversion. The estimates
show that the prior mean values are retained at some locations (especially those far away from the well
field) after inversion, because no observed head data are close by to improve the prior estimates. Further-
more, we find that the prior geologic information leads to different patterns of heterogeneity inside the
well field (e.g., the shape of the low K zone, and the connectivity of DH-15 and 10MI22). This is likely caused
by the fact that the cross-variances (used to update the parameter fields) are different and there are no
observed data that are close to overrule them.

Figure 10 illustrates the reduction of parameter lnK uncertainty for the inversions using data from pumping
tests 1, 2, and 3, with or without using the fault information as the prior information. The reduction of
uncertainty at every location in the domain is defined as the relative change of the residual variance (diago-
nal term of the covariance matrix calculated by equation (4)) from the unconditional variance (user-speci-
fied value without using the fault information or eYY in equation (24) when using the fault information). The
reduction in uncertainty of parameter lnK is significant in the region near the pumped well and the observa-
tion intervals. Figures 10b and 10d show larger uncertainty reductions along the fault position compared to
that in Figures 10a and 10c. This is due to the fact that Figures 10b and 10d use distributed mean and non-
stationary prior covariance to include fault information. Moreover, comparing Figure 10a with 10b, we see
that the uncertainty is reduced in the deep region where test 2 is conducted when the fault information is
included in the inversion. Zha et al. [2016] also reported that the inclusion of more tests decreases the
uncertainty significantly.

4.4. Validation
One way to assess the improvements of the estimate due to the inclusion of the prior geostatistical informa-
tion is to compare the estimate with the true K distribution at the site, but it is unknown and thus impossi-
ble. Alternatively, they can be assessed by validation. That is, we use the estimated parameter fields to
predict the flow fields induced by test 4, which has not been used in the inversion. Then, comparisons of
the predicted and observed drawdown at all observation ports during test 4 in a scatter plot with statistical
norms calculated by equations (12) and (13) would be able to quantitatively show any improvements.

Figure 11a is the scatter plot of the observed and predicted drawdown based on the estimates from the
inversion of tests 1-2 without prior information about the fault (i.e., estimates in Figure 8a). Generally speak-
ing, the L1 (2.38 m) and L2 (9.53 m2) norms indicate that the validation is poor. The drawdown behaviors at
borehole DH-15 is quite accurately predicted (blue dots in the figure), while the predicted drawdowns at all
the other observation intervals are much greater than the observed. Thus, the prediction is highly biased.
As the information of fault is included as prior information, the L1 and L2 (Figure 11b) become smaller than
those in Figure 11a indicating that the inclusion of fault information improves the estimates slightly.

The predicted drawdown using the estimate (Figure 9a) of the inversion for tests 1, 2, and 3, without using
prior information about the fault is plotted against the observed in Figure 11c. Comparing this result to
those in Figures 11a and 11b, we notice that the predicted drawdown has lower L1 and L2 norms (0.70 m
and 0.92 m2) and is relatively unbiased after the inclusion of the drawdown data from test 3. Nevertheless,
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Figure 10. Variance reduction (%) of the estimated K using data from tests 1, 2, and 3 (a) without or (b) with prior knowledge of the low permeable fault. (c) And (d) are three slices from
3-D estimates in Figures 10a and 10b, respectively.
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the scatter remains large. In particular, the agreement between the predicted and observed responses in
borehole DH-15 (blue dots) worsens. This is likely a result of the misinterpretation of the connection
between DH-15 and the pumping location for test 4, 10MI22 as illustrated in the estimates shown in Figures
9a and 9c.

Once the prior information of the fault, in addition to the drawdown data from test 3, is included to derive
the HT estimate (Figure 9d), the estimate yields unbiased predictions with much smaller L1 and L2 norms in
Figures 11d. In particular, the predicted responses in borehole DH-15 are much closer to those observed.
This validation result is a clear indication of improvements on the estimated parameter fields due to incor-
porating prior geologic information in HT analysis.

A comparison of Figures 11a and 11c suggests that the inclusion of test 3 data has significant impacts on
the estimate and in turns, the predicted drawdown. We notice that the pumping location of test 3 is located
on the west side of the fault, while tests 1 and 2 are on the east side of the fault. That is, data from test 3
allow HT to identify the fracture connectivity on the west side of the fault, which was not revealed by data
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Figure 11. Validation results of the estimates using the HT data of tests 1 and 2 (a) without and (b) with prior geologic information (b); validation results of the estimates using 1, 2, and
3 (c) without and (d) with prior geologic information. The scales are different in each plot.
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from tests 1 and 2 (see Figures 8 and 9). Further consideration of the prior geostatistical information during
HT analysis then refines the estimate, which yields much better validation results.

5. Conclusions

The revisit of SLE and MAP algorithms demonstrates that both SLE and MAP are built upon the Bayesian
framework, in which covariance is an additional soft constraint. Nevertheless, SLE continues to update esti-
mates and the soft constraint (residual covariance) during iterations as opposed to MAP. The update of the
residual covariance is essential: it reflects the fact that additional information about the properties is
extracted from observed responses, which improve the estimate and corrects the soft constraint (residual
covariance) during each iteration.

The concept of updating the residual covariance leads to the development of a general geostatistical
approach to incorporate a hierarchical residual covariance, which can reflect the site-specific large-scale
geologic patterns as well as small-scale variability. Specifically, heterogeneity at a field site is conceptualized
as a random field with two-scale nested generic covariance function. To tailor such a generic description of
the variability of a large-scale property to a site-specific one, kriging is applied. It uses observed attributes
to derive the most likely spatial distribution of the property given virtual observations assigned based on
site-specific geologic information. The resultant (residual) covariance reflects the estimated uncertainties
from measurement error, indirect observation, and imprecise large-scale spatial pattern. This residual covari-
ance subsequently serves as prior geologic information for any Bayesian inverse model. This approach is
versatile; it can consider cases where site-specific large-scale geologic patterns are known or unknown; it
also considers fine-scale variability within facies or stratifications.

We use numerical experiments to demonstrate the usefulness of this framework in two cases with two dif-
ferent types of heterogeneity. We demonstrate that with the help of proposed framework, site-specific
large-scale information can be assimilated and improve HT results. The results corroborate our hypothesis
that prior information (in terms of mean distribution and site-specific covariance function) can improve the
estimates of HT surveys using the SLE algorithm when the spatial observations of aquifer responses are
sparse.

Last, the proposed approach with SLE is applied to the analysis of HT surveys conducted at a fractured and
faulted granite field site. The robustness of the estimates is assessed by their ability to predict observed
drawdowns induced by an independent pumping test, not utilized for the estimation. Comparison of
observed and predicted drawdowns confirms that the proposed approach indeed improves the estimates
and in turn, the prediction. Nonetheless, the improvement is most notable when an appropriate layout of
the pumping well in HT survey is used. This result supports the conclusions of studies by Zha et al. [2014,
2015, 2016] that pumping tests must be conducted on both sides of a low-permeable fault zone at this site.
The result also substantiates findings by Yeh and Liu [2000] and Liu et al. [2002] about the importance of col-
lecting sufficient data during HT surveys.
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