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An adaptive sampling approach to reduce uncertainty
in slope stability analysis

Abstract An adaptive sampling approach is proposed, which can
sample spatially varying shear strength parameters efficiently to
reduce uncertainty in the slope stability analysis. This approach
employs a limit equilibrium model and stochastic conditional
methodology to determine the likely sampling locations.
Karhunen-Loève expansion is used to conduct the conditional
Monte Carlo simulation. A first-order analysis is also proposed
to ease the computational burden associated with Monte Carlo
simulation. These approaches are then tested using borehole data
from a field site. Results indicate that the proposed adaptive
sampling approach is an effective and efficient sampling scheme
for reducing uncertainty in slope stability analysis.
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Introduction
Physical or mechanical properties (e.g., soil permeability, soil
cohesion, or soil friction angle) of geologic formation vary in space
at a multiplicity of scales (i.e., variations in the properties between
different strata and variations within individual stratum).
Unconditional stochastic description of these properties of a geo-
logic medium quantifies their heterogeneity or spatial variability,
in a statistical sense without resorting to their detailed spatial
distributions. Specifically, it describes the heterogeneity in terms
of a probability distribution, characterized by a constant mean
(the most likely value of the property), a variance (the average
deviation of the mean property from the actual property at differ-
ent locations), and a correlation structure (i.e., the averaged thick-
ness, width, and length of the soils with similar properties). This
stochastic approach has been widely accepted and is proven to be
useful in slope stability analysis (e.g., Srivastava et al. 2010;
Griffiths et al. 2011; Cho 2014; Jiang et al. 2015; Cai et al. 2017b, c).
However, stability analysis based on the unconditional stochastics
tends to overestimate uncertainty in the analysis since the uncon-
ditional stochastics ignores the knowledge of the properties mea-
sured at specific locations at a field site. These measurements at
these locations reduce our uncertainty about the variability of the
properties at the field site and, in turn, can increase the accuracy of
the stability analysis.

In order to circumvent the shortcoming of the unconditional
approach, the conditional stochastic approach has been developed
over the past few decades. It provides a statistic description of the
heterogeneity at locations where no point observation is available
but it preserves the sampled or measured properties at sample
locations (e.g., Harter and Yeh 1996; Li et al. 2014, 2016b; Cai et al.
2017a). This conditional stochastic analysis allows characterization
of a property field at a high resolution if sufficient measurements
are available, and facilitates estimations of uncertainty associated
with the characterization (Yeh et al. 2015a, b).

Generally, the available observations include direct measure-
ments of properties (e.g., soil cohesion or soil friction angle) or
their surrogate measurements (e.g., fluid pressures or
stresses—responses of the medium to some excitations, Wang
et al. 2016; Li et al. 2016b). In this study, only the effect of direct
measurements of the effective cohesion and the effective soil
friction angle of the soil is investigated.

Although conditional stochastic approaches have been used in
many fields (e.g., Harter and Yeh 1996; Van den Eijnden and Hicks
2011; Lloret-Cabot et al. 2014), few attempts have applied them to
evaluations of slope stability and reliability. More importantly, few
studies have addressed the salient question: how to collect samples
of soil strength in a cost-effective manner to reduce the uncertain-
ty in the slope stability analysis.

Recently, Cai et al. (2016) demonstrated that uncertainty in
slope stability analysis is not equally influenced by heterogeneity
everywhere within the slope. Likewise, Zhang et al. (2011) and Li
et al. (2013) found that the contributions to the slope failure
probability are dominated by a limited number of representative
slip surfaces. These findings compel us to develop a cost-effective
sampling approach to reduce the uncertainty in the analysis. That
is, one determines the critical sampling locations and then samples
at these locations to adequately characterize the effects of hetero-
geneity, rather than measures the soil properties everywhere with-
in the slope.

The objective of this study is to develop an adaptive sampling
approach to conduct a conditional stochastic analysis of slope
stability to reduce uncertainty and to enhance the reliability of
the analysis. In order to achieve this objective, we develop a
method, based on kriging and Karhunen-Loève (K-L) expansion,
for generating random soil strength fields, conditioned on our
prior information about the spatial variability and in situ mea-
surements. Afterward, a stochastic limit equilibrium method
(LEM, a physical model for assessing slope stability, see
BModeling of FSi, FS, and Pf^ section) is introduced to conduct
conditional Monte Carlo simulation (MCS) for identifying possible
slip surfaces, which dictate the sampling locations. Further, a first-
order analysis approach is presented to ease the computational
burden associated with MCS. At last, the proposed sampling ap-
proach and associated stochastic analysis tools are applied to a
field site.

Adaptive sampling strategy
Slope stability and reliability analysis is an analysis aim to quantify
the uncertainty of our decision based on incomplete information
about slope stability. While many factors can influence the slope
stability (e.g., unknown temporal and spatial distributions of
stresses, pore-water pressures, and strengths of a slope), the spatial
variability of the shear strength parameters of a slope is the focus
in this paper.
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Rationale and procedure of the adaptive sampling approach
The rationale and procedure of this adaptive sampling approach
are illustrated in Fig. 1. If a slope has n number of potential slip
surfaces, and the strength property of each surface is unknown at a
given field site, we first conceptualize the spatial distribution of the
soil strength property in a slope as a random field. That is to say,
with a given spatial statistics (estimated from some available
measurements of the properties from the field site or similar
geologic settings), there are an infinite number of possible reali-
zations of the spatial distribution of the property and in turn, an
infinite number of factors of safety FSis at the ith potential slip
surfaces. Note that the FSi is evaluated based on the limited
equilibrium physical model, LEM (Eq. (16); note i = 1, ⋯, n), and
the given strength properties. This leads to many possible critical
slip surfaces within the n potential slip surfaces. In order to
narrow down the possible locations of the critical slip surface,
the proposed approach calculates the lower bound (LBi) at the
ith slip surface based on all possible FSis at the slip surface. It then
finds the minimum value of the lower bounds (LBis) of the entire n
slip surfaces. This process is illustrated as step 1 in Fig. 1.

In step 2, we check if any samples should be taken next.
Specifically, we check if the first of the three stopping criteria
(see BCriteria for stopping the sampling process^ section) (i.e., if
the probability of failure of the slope equals 1) is met. If it is true,
we do not have to take any sample and move to step 4. If the first
criterion is not met, we then check the criterion 2 (i.e., if the
probability of failure of the slope is sufficiently small). If this
criterion is met, we move to step 4. If not, we then check the
criterion 3 (i.e., if the budget for sampling runs out). If this
criterion is met, we move to step 4. Otherwise, we move to step 3.

In step 3, we take a soil sample to determine soil strength
parameter value at the location where the minimum value is.
This sample value at this location is then included in a conditional
stochastic simulator (see BConditional stochastic methodology^
section) to generate conditional realizations of the parameter field.
These realizations honor the same sample value at the sample
location, and they are used to update the LBis at the n potential
slip surfaces. Based on this updated LBis, a new likely critical slip
surface (i.e., the minimum value of the LBis of the n slip surfaces)
is determined. Then we move back to step 2. This process cycles
between step 2 and step 3 until some stopping criteria are met.

Once the cycling between step 2 and step 3 stops, the approach
has already generated conditional realizations of the parameter
fields that honor the sample values at all the sample locations. We
then determine a FS for the entire n potential slip surfaces (Eq.
(17)) of each conditional realization as step 4. Consequently, we
have a large number of FS values for the entire slope. From these
FS values, we calculate their mean (μFS) and standard deviation
(σFS) and determine the probability of failure (Pf). Thus, the most
likely FS value for the slope and its reliability is addressed.

It is a fact that as the number of samples increases, the standard
deviation of FS decreases, and the mean of FS approaches the
correct (true) FS. However, the proposed sampling approach based
on the minimum LBis resulting from conditional stochastic anal-
ysis identifies the likely critical part of a slope for taking measure-
ments and narrows the possible distribution of heterogeneity. As
such, this approach reduces uncertainty in our slope stability
analysis with a limited number of samples.

We first consider to use the minimal reliability index (e.g.,
Christian et al. 1994; Li et al. 2014) to determine the likely critical
slip surface and further the sample location. The reliability index is

defined as βi ¼ μFSi−1
� �

=σFSi , where μFSi and σFSi are the mean

and standard deviation of FSis at the ith potential slip surfaces,
respectively. Note that these means and standard deviations are
different from the mean (μFS) and standard deviation (σFS) of the
possible FSs discussed in the previous paragraph. This reliability
index is useful, but when the sample is taken at the ith potential
slip surface (measurement errors are considered as negligible),
σFSi would become 0 (i.e., no uncertainty). This zero uncertainty
thus yields an infinite value for βi. In order to avoid this problem,
we use μFSi−ασFSi (where α is a prescribed constant) as the LBi of
all the realizations of FSi to determine the next sample location.

Note that μFSi−3σFSi (when α is set to be 3) would lead to
99.865% of all the realizations of FSi being higher than μFSi−3σFSi
if the probability distribution of FSi is normal. This is also valid for
log-normal distributed FSi because conditional log-normal and
conditional normal distributions become quite similar as more
samples are used to condition, and uncertainty of FSi becomes

Calculate LBi at the ith  slip surface based on all possible 

FSis at the slip surface and find the minimum value of LBis 

of the n slip surfaces

Check if the stopping criteria

 are met

Take one sample at the critical slip surface with minimum 

value of LBis

No

Include this sample in a conditional stochastic simulator to 

generate conditional realizations of the soil property and 

evaluate FSis at the ith slip surface

Determine a FS for the n slip surfaces of each conditional 

realization of the soil property

Yes

Calculate FS statistics, Pf  and identify the critical part of 

slope 

Generate realizations of the soil property and evaluate FSis 

at the ith slip surface based on a given spatial statistics

Update LBis of the n slip surfaces and determine the new 

critical slip surface with the minimum value of LBis

Step 1

Step 3

Step 4

Step 2

Fig. 1 Flow chart of the adaptive sampling approach
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small (Griffiths et al. 2011). Therefore, μFSi−3σFSi is a reasonable
approximation of the LBi. Since μFSi and σFSi are conditional mean
and conditional standard deviation, which changes with the num-
ber of samples, the LBi changes accordingly. Now, we emphasize
that the critical slip surface with the minimum of μFSi−ασFSi values
may not be the same as that with the minimum of βi. Nonetheless,
the locations of samples selected according to either minimum μFSi
−ασFSi or minimum βi criterion will coincide after several critical
slip surfaces are identified.

Criteria for stopping the sampling process
Generally, the adaptive sampling process stops (1) if the mean of
FSis (μFSi ) at the potential slip surface where a sample has been
taken is smaller than 1, which implies that the slope is evaluated as
unstable using the sample value, the probability of failure Pf equals
1 and additional samples have no effect on Pf. (2) If the minimum
value of LBis (μFSi−3σFSi ) is larger than or equal to 1 (i.e., the

reliability index βi ¼ μFSi−1
� �

=σFSi ≥3), which implies that Pf is

small enough (smaller than 1–99.865% = 0.135% = 0.00135), μFS is
larger than (or equal to) 1, and the uncertainty associated with μFS
is small enough compared with μFS. Or (3) if the upper limit of the
number of samples is reached. This number of samples depends
on the goal and budget of the project.

Conditional stochastic methodology

Generating conditioned random soil strength parameter field
The random field theory (Vanmarcke 1977a, b; El-Ramly et al.
2002; Griffiths and Fenton 2004; Cho 2007; Yeh et al. 2015a) is
applied in this study to model the spatial variability of soil prop-
erties. Each soil property is treated as a random field, X, which is a
collection of random variables (X1, X2,…, Xn)

T at different loca-
tions z = (z1, z2,…, zn)

T within a bounded domain Ω, described by
a joint probability density function with a mean μX and a spatial
covariance matrix RXX. In order to obtain a preliminary evaluation
of the μX and the standard deviation σX for a domain, Ω, one may
collect some samples at a given field site or one can calculate using
available data from a similar geologic setting. In this study, we
assume the random field is log-normally distributed (e.g., Parkin
et al. 1988; Parkin and Robinson 1992; Phoon and Kulhawy 1999;
Brejda et al. 2000; Fenton and Griffiths 2008; Griffiths et al. 2011; Li
et al. 2014; Jiang et al. 2015).

Random field X with log-normal distribution can be normal-
ized and represented in the form of the standard random field, Y,
which has zero mean and unit variance. The transformation from
X to Y is done as follows:

X ¼ exp σlnXYþ μlnXð Þ ð1Þ

where μlnX ¼ lnμX− 1
2σ

2
lnX and σlnX ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln 1þ σX=μXð Þðp
2Þ are the

mean and standard deviation of the logarithm of X, respectively.
Here we say the random field X is in the physical space, x, which is
distinguished from the transformed standard normal space y.

Correlation scale, λ, is used to represent the distance within
which the soil properties are significantly correlated. Physically,
the correlation scale describes the average dimensions (e.g., length,
thickness) of heterogeneity (e.g., layers, or stratifications) within Ω

(see Figures 4.12, 4.13, and 4.14 in Yeh et al. 2015a). It shall be noted
that λ is considered as the attribute of Ω and is invariant in terms
of transformation between space x and space y. Based on λ, an
autocorrelation matrix CYY, a statistical measure of the spatial
structure (or spatial pattern) of heterogeneity, can be expressed
in space y as follows:

CYY ¼
1 ρΔ12

⋯ ρΔ1n

ρΔ21
1 ⋯ ρΔ2n

⋮ ⋮ ⋱ ⋮
ρΔn1

ρΔn2
⋯ 1

2
664

3
775 ð2Þ

where ρΔij
is the autocorrelation between location zi and zj. In this

study, a common single exponential autocorrelation function is
adopted as follows:

ρΔij
¼ ρ Δij
� � ¼ exp −Δij=λ

� � ð3Þ

where Δij = |zi − zj| is the absolute distances between location zi
and zj.

Assume m samples at m sample locations are available in
physical space x, and they are denoted as Xs. Similarly, Xs are also
transformed into space y using Eq. (1) and denoted as Ys. The next
step is to derive the conditional mean properties and their associ-
ated conditional (or residual) covariance. The former represents
the most likely properties at locations where no measurements are
available, with given measurements at sampling locations, and the
latter denotes the likely deviation of the conditional mean from
the true properties. Simple kriging is used to accomplish this task.
That is, an estimate of n × 1 conditional mean vector μYjYs

and n ×

n conditional autocorrelation matrix CYYjYs , given observed Ys is:

μYjYs
¼ ωTYs ð4Þ

CYYjYs ¼ CYY− βTβ
� � ð5Þ

where ω and β are the matrices of kriging weights with the
dimension of m × n, which are obtained by solving kriging system
equations as follows:

CYsYsω ¼ CYsY ð6Þ

ΓCYsYs
β ¼ CYsY ð7Þ

CYsYs ¼ ΓCYsYs
ΓT
CYsYs

ð8Þ

where CYsYs is defined as the m ×m autocorrelation matrix gener-
ated between sample locations, and ΓCYsYs

is the lower triangular
matrix with the dimension of m ×m obtained from the Cholesky
decomposition (e.g., Cherny 2005; Li et al. 2015) of CYsYs , using Eq.
(8). CYsY is defined as the m × n autocorrelation matrix generated
between sample locations and every location within Ω. Note that
conditional mean μYjYs

becomes spatially distributed mean, and
the diagonal entries of conditional autocorrelation matrix, CYYjYs ,
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are the conditional variances σ2
YjYs

. At sample locations, the con-
ditional variance σ2

YsjYs
is 0, if measurement errors are negligible.

In addition, each entry of CYYjYs depends on the absolute distance,
Δij = |zi − zj|, but also the locations zi and zj. That is to say, condi-
tioning a stationary random field on known measurement data
leads to a nonstationary random field. Nonetheless, CYYjYs remains
bounded and symmetric and as a positive definite matrix.

Once the conditional mean and covariance are calculated, we
proceed to the generation of realizations of conditional random
fields. These fields preserve the sample values at the sample loca-
tions and have many possible values at other locations. The mean
of the possible values is the conditional mean, and their variability
is described by their conditional variance. These conditional ran-
dom fields can be produced using many random field generation
algorithms such as the K-L expansion (e.g., Ghanem and Spanos
1991; Lu and Zhang 2007; Jiang et al. 2015) or the Cholesky decom-
position (e.g., Srivastava et al. 2010; Li et al. 2015). In this study, the
K-L expansion is adopted because it has been widely used in
published literature (e.g., Ghanem and Spanos 1991; Cho 2014; Ali
et al. 2014; Jiang et al. 2015; Huang and Griffiths 2015; Cai et al.
2017c) and because this method has desirable properties. For
example, this method allows the random field discretization to
be independent of the spatial discretization of the problem do-
main. Hence, we can adjust the solution precision according to the
requirement of problems. In addition, this method has a wide
range of applications including nonstationary and multidimen-
sional problems. Detailed descriptions of K-L expansion proper-
ties can be found in Ghanem and Spanos (1991).

Specifically, a continuous form of conditional random field Y Ysj
can be represented as:

Y Ysj lð Þ ¼ Y Ysj l; θð Þ ¼ μ Ysj lð Þ þ ∑
∞

i¼1
ξi θð Þ ffiffiffiffi

ηi
p

f i lð Þ ð9Þ

where ξi(θ) is a set of uncorrelated standard normal random
variables and θ is the coordinates in the random events space; l
is the function of the position vector defined over Ω; ηi and fi(l) are
eigenvalues and eigenfunctions of the conditional autocorrelation
function ρ Ysj , respectively. ηi and fi(l) are obtained by solving the
homogeneous Fredholm integral equation of the second kind
(Ghanem and Spanos 1991; Huang 2001; Jiang et al. 2015):

∫Ωρ Ysj l1; l2ð Þ f i lð Þdl2 ¼ ηi f i l1ð Þ ð10Þ

Ghanem and Spanos (1991) described a Galerkin type procedure
for solving Eq. (10). This procedure transforms the eigenvalue
problem in the continuous form (Eq. (10)) into the eigenvalue
problem in a discretized form:

CYYjYs F ¼ FΛ ð11Þ

whereΛ is a n × n diagonal matrix of eigenvalues ηi of CYYjYs ; F is a
n × n matrix whose columns are the corresponding eigenvectors
fi(z) of CYYjYs . Note that eigenfunction fi(l) has been transformed
to eigenvector fi(z) because fi(z) is only computed at the respective
points of the spatial discretization of Ω. Ghanem and Spanos
(1991) demonstrated that this approximation could yield satisfac-
tory results by using a finite number of eigenmodes. Subsequently,

the n eigenvalues and the n eigenvectors obtained from Eq. (11) are
used to generate the conditioned random field, Y Ysj :

Y Ysj ¼ μYjYs
þ ∑

n

i¼1
ξi θð Þ ffiffiffiffi

ηi
p

f i zð Þ ð12Þ

Notice that Eq. (12) is different from Eq. (9) since the summa-
tion on the right-hand side of the equation is only up to n.

For implementation, after sorting the ηi and the corresponding
fi(z) in descending order, the K-L expansion terms can be truncat-
ed up to the order of k. The value of k highly depends on the
desired accuracy. While several methods (e.g., Huang 2001; Jiang
et al. 2014; Cho 2014) have been proposed to determine the value of
k, in this study, k is set to equal to n.

Thereafter, using Y Ysj , the conditioned log-normal distributed
random field X Xsj in the physical space x is obtained via the
transformation of Eq. (1) using μlnX and σlnX.

The aforementioned algorithm is used to generate uncondition-
al or conditional soil cohesion and soil friction angle parameter
realizations for the MCS. However, the generated soil cohesion
parameter realizations are independent of the generated soil fric-
tion angle parameter realizations.

Incorporation of cross-correlation between cohesion and friction angle
random fields
Generally, cross-correlations between c′ and tanϕ′ exist (e.g.,
Griffiths et al. 2011; Li et al. 2014, 2015; Jiang et al. 2015). For this
reason, we implement an algorithm to incorporate cross-
correlation between these two random fields derived from the
algorithm described in the previous section. This algorithm is
discussed as follows. Consider two cross-correlated, and log-
normal distributed random fields, Xc0 and Xtanϕ

0 (vectors with a

dimension of n × 1) with measurement data Xsc0 and Xstanϕ
0 at

sample locations. Note that sample locations of Xsc0 and Xstanϕ
0

are assumed the same, which is usually the case. A cross-

correlation matrix GX
c
0 X

tanϕ
0 is obtained as GX

c
0 X

tanϕ
0 ¼ ρi; j

� �
2�2

,

where 2 × 2 denotes the dimension of GX
c0 Xtanϕ0

, ρi, j is the cross-

correlation coefficient between the ith random field and the jth
random field in the physical space x, where i ¼ Xc0 ;Xtanϕ

0 and

j ¼ Xc0 ;Xtanϕ
0 . Using the transformation of Eq. (1), the corre-

sponding cross-correlated standard normal random field Yc0 and
Ytanϕ

0 and the measurement data Ysc0 and Ystanϕ
0 in the trans-

formed standard normal space y are obtained. The cross-

correlation matrix GY
c0 Ytanϕ0

¼ ρlni;ln j
� �

2�2
is derived (Fenton and

Griffiths 2008) as

ρlni;ln j ¼ ln 1þ ρi; jcovicov j

� �
=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln 1þ cov2i
� �

ln 1þ cov2j
� �r

i ¼ Xc0 ;Xtanϕ
0 j ¼ Xc0 ;Xtanϕ

0
� �

ð13Þ

where covi = σi/μi is the coefficient of variation of i. Subse-
quently, the Cholesky decomposition is used to factor GY

c
0 Y

tanϕ
0 ,

and the lower triangular matrix ΓGY
c
0 Y

tanϕ
0 with the dimension

of 2 × 2 is obtained:
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GY
c
0 Y

tanϕ
0 ¼ ΓGY

c0 Ytanϕ0
ΓT
GY

c
0 Y

tanϕ
0

ð14Þ

The transformation between the cross-correlated standard nor-
mal random fields (Yc0 and Ytanϕ

0 ) and the independent standard

normal random fields (Y
0
c0 and Y

0

tanϕ
0 ) is completed using:

Yc0 ;Ytanϕ
0

� �
¼ Y

0
c0 ;Y

0

tanϕ
0

� �
ΓT
GY

c
0 Y

tanϕ
0

ð15Þ

First, the cross-correlated measurements Ysc0 and Ystanϕ
0 are

transformed to independent ones using Eq. (15), denoted as Y
0
sc0

and Y
0

stanϕ
0 . Next, the method described in the section BGenerating

conditioned random soil strength parameter field^ is applied to
generate two independent conditioned standard normal random
fields Y′

c′jY′
sc′

and Y′
tan ϕ′jY′

stan ϕ′
, respectively. The cross-correlated

conditioned standard normal random fields Yc′jYsc′
and

Ytan ϕ′jYstan ϕ′
are then generated using Eq. (15). Again, the cross-

correlated conditioned log-normally distributed random fields
Xc′jXsc′

and Xtan ϕ′jXstan ϕ′
in the physical space x are obtained via

Eq. (1).
Based on this algorithm, unconditional or conditional soil

cohesion and soil friction angle parameter fields, which are corre-
lated or mutually independent of each other, can be generated for
the MCS.

Modeling of FSi, FS, and Pf
Once unconditional or conditional random realizations of pairs of
c′ and tanϕ′ random fields are generated, the next step is to link
the random fields to a physical model that can be used to deter-
mine FSi random field associated with each potential slip surface.
The physical model is discussed below.

Without considering deformation (or neglecting stress-strain
relationship), the factor of safety along the ith potential slip
surface (i.e., FSi) of an infinite slope can be evaluated using the
LEM. In this study, we further assume that there is no presence of
water or fluid pressure in the slope. Consequently, FSi can be
expressed as follows (e.g., Griffiths et al. 2011; Cho 2014; Li et al.
2014; Ali et al. 2014):

FSi ¼ c
0
i

ziγsinβcosβ
þ tanϕ

0
i

tanβ
zi≤Hð Þ ð16Þ

where β is the slope inclination, γ is the total unit weight, H denotes
the vertical distance of soils from the slope base to the land surface, c

0
i

and ϕ
0
i are the effective cohesion and the effective soil friction angle

at the ith potential slip surface, and zi is the depth (positive down-
ward) of the ith potential slip surface (see Fig. 2).

Based on Eq. (16), the random fields of c′ and tanϕ′ thus can be
converted to FSi random field associated with each potential slip
surface over the entire slope. These FSi random fields are used to
determine the lower bounds LBi and, in turn, the sampling location
for the adaptive sampling approach as described in the BAdaptive
sampling strategy^ section. In addition, they can be employed to
calculate the FS and Pf for the entire slope as discussed below.

FS for the entire slope is:

FS ¼ min FSif g ¼ min
c
0
i

ziγsinβcosβ
þ tanϕ

0
i

tanβ

( )
zi≤H; i ¼ 1; ⋯; nð Þ

ð17Þ
The system failure probability Pf then can be evaluated using:

Pf ¼ 1
Nr

∑
i¼1

Nr

I FS < 1ð Þ ð18Þ

where Nr is the number of realizations generated during MCS. I(·)
denotes the indicator function. That is, for a realization, I(FS < 1) is
equal to 1 when FS < 1 occurs, and 0 otherwise (e.g., Li et al. 2013;
Jiang et al. 2015).

First-order estimation of LBi
As discussed in the BAdaptive sampling strategy^ section, the
adaptive sampling approach relies on the LBi, (μFSi−3σFSi ). The
μFSi and σFSi to determine the LBi can be calculated via statistical
analysis of MCS realizations of FSi evaluated at the ith potential
slip surface as discussed above. However, MCS is inefficient; it
requires to generate a large number of realizations to ensure that
the unbiased statistics can be obtained. In order to address this
issue, an efficient method called first-order analysis (e.g., Mao
et al. 2011, 2013; Sun et al. 2013; Cai et al. 2016, and many others)
is introduced to approximate the LBi.

That is, using Eq. (1)–Eq. (8), one can derive the conditional
mean and the conditional autocorrelation matrix of Yc0 and Ytanϕ

0 ,

and they are μY
c
0 jYsc

0 ,CY
c
0 jYsc

0 , and μ
Y
tanϕ

0

			Y
stanϕ

0
,C

Y
tanϕ

0

			Y
stanϕ

0
, respectively.

Similarly, one can compute the conditional cross-correlation matrix
betweenYc0 andYtanϕ

0 , denoted as C
Y
c0 tanϕ0

			Y
sc0 stanϕ0

using these equations.

Subsequently, the conditional mean vectors, conditional autocovariance

Potential
slip surface

', c'
z

H
Slope base

Land surface

Potential
slip surface

', c'
z

H
Slope base

Land surface

Fig. 2 An infinite slope model
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matrices, and cross-covariance matrix of lnc′ and ln tanϕ′ are evaluated
as follows:

μlnc0 jsc0 ¼ σlnX
c
0 μY

c
0 jYsc

0 þ μlnX
c
0 ð19aÞ

μlntanϕ0 jstanϕ0 ¼ σlnX
tanϕ

0 μ
Y
tanϕ0

			Y
stanϕ0

þ μlnX
tanϕ0

ð19bÞ

Rlnc0 jsc0 ¼ σ2
lnX

c
0 CY

c0 jYsc0
ð19cÞ

Rlntanϕ
0 jstanϕ0 ¼ σ2lnX

tanϕ
0 C

Y
tanϕ0

			Y
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ð19dÞ

Rlnc0 lntanϕ0 jsc0 stanϕ0 ¼ σlnX
c
0 σlnX

tanϕ
0 C

Y
c0 tanϕ0

			Y
sc0 stanϕ0

ð19eÞ

The statistical properties of lnFSi at the ith surface are approx-
imated using the first-order analysis based on Taylor series expan-
sion. That is,

μlnFS≈ln
e
μ
lnc

0 jsc0
ziγsinβcosβ

þ e
μ
lntanϕ

0 jstanϕ0
tanβ

 !
zi≤H i ¼ 1; ⋯; nð Þ ð20aÞ

RlnFSlnFS≈JlnFSlnc0Rlnc0 jsc0 JTlnFSlnc0 þ JlnFSlntanϕ0Rlntanϕ
0 jstanϕ0 JT

lnFSlntanϕ
0

þ JlnFSlnc0Rlnc0 lntanϕ
0 jsc0 stanϕ0 JT

lnFSlntanϕ
0 þ JlnFSlntanϕ0RT

lnc0 lntanϕ
0 jsc0 stanϕ0 JTlnFSlnc0

ð20bÞ

where JlnFSlntanϕ0 , JlnFSlnc0 are n × n diagonal sensitivity matrices of
lnFSi (i = 1, ⋯, n) with respect to changes in lntanϕ

0
i and lnc

0
i of

different zi (i = 1, ⋯, n), respectively. Each diagonal entry of
JlnFSlntanϕ0 and JlnFSlnc0 is calculated by:

J lnFSilntanϕ0
i
¼ ∂lnFSi

∂lntanϕ0
i

					
μ
i;lnc0 jsc0 ;μi;lntanϕ0 jstanϕ0


 �

¼ 1

1þ e
μ
i;lnc

0 jsc0 −μi;lntanϕ0 jstanϕ0

 �

= ziγcos2βð Þ

ð21aÞ

J lnFSilnc0i
¼ ∂lnFSi

∂lnc0i

				
μ
i;lnc0 jsc0 ;μi;lntanϕ0 jstanϕ0


 �

¼ 1

ziγcos2βe
μ
i;lntanϕ

0 jstanϕ0 −μi;lnc0 jsc0

 �

þ 1

ð21bÞ

where i = 1, ⋯, n; μlnFS is the n × 1 conditional mean vector for lnFSi
(i = 1, ⋯, n); RlnFS ln FS is the n × n conditional auto-covariance
matrix for lnFSi (i = 1, ⋯, n).

The diagonal entries of RlnFS ln FS are the conditional variance
σ2
lnFS for lnFSi (i = 1, ⋯, n). The LBi is then determined by μlnFSi−3

σlnFSi in logarithm form. This first-order approach thus avoids the
brute-force MCS approach for selecting sampling locations.

Illustrative example
The usefulness of the proposed adaptive sampling approach is
demonstrated using borehole data from Central Business
District, Perth, Western Australia (Li et al. 2016a). The profiles of
soil strength parameters, c′ and tanϕ′, along six boreholes (BH1
through BH6) are displayed in Fig. 3a and b, respectively. As
shown in the figures, three types of soil layers (i.e., clay, sand,
and silt) present over the depth of 28 m. The thickness of soil
layers ranges from 0.3 to 8.7 m. Soil strength data from the six
boreholes are first used to estimate the prior statistics of the soil
strength parameter to obtain the unconditional stochastic descrip-
tion of the spatial variability of the soil parameters for the entire
field site.

The unconditional statistics of c′ and tanϕ′ based on the six
borehole data are tabulated in Table 1, including a mean and
standard deviation of c′ denoted as μc0 and σc0 , mean and standard
deviation of tanϕ′ denoted as μtanϕ0 and σtanϕ0 , cross-correlation

coefficient ρc0 tanϕ0 and correlation scale λ,along the borehole di-

rection (i.e., z-direction). Variogram analysis indicates that λ is
about 6.4 m, which is about the average thickness of all layers. This

result substantiates the physical meaning of λ, which is the average
dimension (e.g., length, thickness) of heterogeneity (e.g., layers, or
stratifications) at a field site (Yeh et al. 2015a).

Subsequently, these prior statistics and different sampling ap-
proaches are applied to determine the slope stability of a reference
slope, which is assumed to be consisting of perfectly stratified
layers so as the LEM physical model is applicable. Table 1 also lists
the slope geometry parameters (i.e., slope high, angle, and unit
weight).

FSi profile of the reference c′ ‐ tanϕ′ slope
This reference slope is discretized into 280 potential slip surfaces
first. Then, c′ and tanϕ′ profiles of BH4 are mapped to the
potential slip surfaces as the Breal^ distributions of c′ and tanϕ′

of this reference slope. The Bcorrect^ FSi for each potential slip
surface of the reference slope is illustrated in Fig. 4. The FS
calculated using these Breal^ profiles is 1.0961 with the critical
slip surface at depth 24.45 m. They are viewed as the Bcorrect^ FS
and Bcorrect^ slip surface, respectively. Because the Bcorrect^ FS
is greater than 1, the reference slope is considered stable, and the
Bcorrect^ Pf is 0.

Effect of random sampling on estimation of FS and reliability of slope
In order to demonstrate the effectiveness of the adaptive sampling
approach, we first investigate the case where a sample
(measurement) is taken at random from the 280 potential slip
surfaces for conditioning until all the 280 potential slip surfaces
are considered. For each sample, 100,000 realizations are
employed to conduct the conditional MCS. Figure 5a–d displays
the sample locations and conditional Pf and FS statistics (μFS and
σFS), respectively, associated with 0, 10, 20, …, 280 sample(s)
(indicated along the horizontal axes).

As illustrated in Fig. 5b, with the increase in the number of
samples, the Pf approaches the Bcorrect^ Pf, which is 0. That is, the
mean of FS, μFS, becomes the Bcorrect^ FS (Fig. 5c), which is
greater than 1 (the slope is stable), and σFS, representing the
uncertainty of FS, gradually reduces to 0 (Fig. 5d).
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Fig. 3 a, b Profiles of soil strength parameters (BH1–BH6) in Perth City, Australia (according to Li et al. 2016a)

Table 1 Prior statistics of c′ and tanϕ′ based on borehole data and slope geometry
parameters

Parameters Values

Mean of c′, μc0 9.0 kN/m2

Standard deviation of c′, σc0 7.71 kN/m2

Mean of tanϕ′, μtanϕ0 0.564

Standard deviation of tanϕ′, σtanϕ0 0.0882

Cross-correlation coefficient between
c′ and tanϕ′, ρc0 tanϕ0

− 0.664

Correlation scale in borehole direction
based on variogram analysis, λ

6.4 m

Slope height, H 28 m

Slope angle, β 25°

Total unit weight, γ 20 kN/m3
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Fig. 4 The Bcorrect^ FSi profile of the reference slope
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Notice that in Fig. 5b, Pf is reduced close to 0 after 110 samples are
included, and the value of σFS remains around 0.012 even after the
inclusion of 110 samples. It finally becomes 0 once all the 280 samples
are used for conditioning, meanwhile μFS approaches Bcorrect^ FS.
These results indicate that μFS and σFS do not behave the same way as
does Pf, since μFS and σFS vary with the conditional distribution of

FS, while Pf represents the percentage of FSs that is smaller than 1
(the limit equilibrium state). These results reveal the difficulty of
estimating the exact FS, and the necessity of a stochastic analysis to
derive the uncertainty of the FS estimate.

The LBi (i.e., μFSi−3σFSi ) along the slope based on 100,000 FSi
realizations conditioned with 30 samples is shown as a solid black
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Fig. 5 a–d Sample locations and Pf and FS statistics associated with increasing number of samples (m is sample number) by random sampling based on MCS with
100,000 realizations
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respectively
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line in Fig. 6a. Color lines in the figure represent selected 1000 FSi
profiles from the 100,000 realizations, and the vertical long-dashed
line represents the limit equilibrium state (i.e., FS = 1). The LBis
based on 100,000 FSi realizations, and the 1000 realizations con-
ditioned with 270 samples are illustrated as a solid black line and
color lines in Fig. 6b, respectively. Because of a large number of
conditioning data, the two lines are distinguishable only at the 10
unconditioned locations. As demonstrated in Fig. 6a, b, the calcu-
lated LBi agrees with the lower bound of all possible FSis at the ith
slip surfaces. As expected, the LBis and all FSi profiles change as
the number of samples increases and gradually converge to the
Bcorrect^ FSi field (see Fig. 4). In addition, even though after
conditioning with 270 samples, there still exists uncertainty at
locations where no sample is taken, leading to the uncertainty
associated with the FS estimate. Meanwhile, the Pf is extremely
close to 0 as the minimum value of LBis is larger than 1 (the limit
equilibrium state).

Adaptive sampling approach based on MCS
The sample locations, conditional Pf, conditional μFS, and its σFS
from the adaptive sampling approach based on MCS are shown in
Fig. 7a–d, respectively, with increasing number of samples; 100,000
realizations are used at each conditional MCS. Criterion 2 (i.e., Pf
approaches 0) is selected for stopping this process. Comparing
these results with those from the random sampling approach
(Fig. 5), we observe that fewer samples are needed to obtain
accurate evaluations of FS and Pf with small uncertainty. That is,
only 25 samples are needed to meet criterion 2 and to obtain the
conditioned Pf = 0.00169, μFS = 1.0525, σFS = 0.0142. On the other

hand, the random sampling requires at least 110 samples to yield
similar results.

Since the adaptive sampling approach is driven by the condi-
tional LBis, the behaviors of LBis during the adaptive sampling
process are illustrated in Fig. 8 to show the role of the sampling
approach on reducing the uncertainty. These LBis are generated
based on 100,000 realizations using MCS for each new sample.
Figure 8 shows that the 25 samples based on the LBis are not
equally distributed along the vertical direction of the slope.
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Fig. 7 a–d Sample locations and Pf and FS statistics associated with increasing number of samples (m is sample number) by adaptive sampling approach based on MCS
with 100,000 realizations
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Specifically, at the beginning, samples are taken at the interval of
one correlation scale (e.g., when using 4 samples in Fig. 8), grad-
ually, the intervals are bisected, and the samples are taken more
locally. The sampling density is the largest from 18 to 25 m (i.e., the
critical part) and the smallest from 0 to 12 m within the slope. This
reflects the fact that in less critical areas, less samples are needed.

For better comparisons, the shape of the LBis based on 25
samples, the Bcorrect^ FSi field (see Fig. 4), and the reference
profiles of soil strength parameters (i.e., tanϕ′ of BH4 in Fig. 3)
are redrawn in Fig. 9. As shown in Fig. 9, it is apparent that the

shape of the LBis reflects the lithological heterogeneity or stratig-
raphy, and the likely regions of critical slip surfaces are identified.
This result indicates that the effects of heterogeneity on slope
stability analysis can be sufficiently characterized by a small num-
ber of samples via the adaptive sampling approach. It is, hence, not
surprising to see that FS and Pf, based on this characterized result
that captures the critical part of the slope, become more accurate
and approach the Bcorrect^ FS and Pf (Fig. 7) as more samples are
included.

Adaptive sampling approach based on first-order analysis
Although the above adaptive sampling approach is appealing, two
concerns need to be addressed. First, the constant updating LBis
using MCS is time-consuming. To ease this effort, the conditional
first-order estimation of LBis is used (see BFirst-order estimation
of LBi^ section). Second, only one sample is taken at each time and
the LBis have to be updated accordingly. This step-by-step ap-
proach is inefficient since it leads to many simulations. This
concern leads to a manual decision for the number of samples to
be taken at each time.

This manual decision approach is demonstrated in Fig. 10a,
where five samples are first taken at the interval of one correlation
scale to cover the entire slope. After these five samples, we exam-
ine the shape of the LBis (μlnFSi−3σlnFSi ) and decide the number of
samples to be taken. For example, the part marked with a rectangle
is more critical to FS and Pf where the values of LBis in the
rectangle are smaller than the limit equilibrium state (i.e., lnFS =
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0) and values of LBis at other parts of the slope. We therefore
expect that the three Bcrests^ vertexes in the rectangle will sequen-
tially become the minimum point of the LBis as the sampling
process continues. Accordingly, three samples are taken at the
three vertexes simultaneously. Similarly, five samples can be taken
at the five vertexes marked with two rectangles in Fig. 10b after-
ward. Finally, 23 samples are included (Fig. 10c) in accordance with
criterion 2. With these samples, we obtain conditioned Pf = 0.0012,
conditional μFS = 1.058, σFS = 0.0140. Apparently, this manual de-
cision approach is more efficient than the Bstep-by-step^ sampling
approach, and it yields comparable results.

The above adaptive sampling approach implicitly suggests that
the minimum number of samples required to reduce uncertainty
in the stability analysis would be the ratio of the slope height to the
correlation scale length of the soil strength parameter (H/λ). That
is, at least one sample should be taken within each layer or stratum
if the strata are known since the correlation scale represents the
average thickness of the strata of the slope. Afterward, additional
samples (if any) should be taken within the identified critical part
of slope to reach a sufficient characterization of heterogeneity in
this region. At last, the conditional MCS should be carried out to
assess FS, Pf, and uncertainty.

Lastly, we must emphasize our prior knowledge of the spa-
tial statistics of a field site is one of the keys to our adaptive
sampling approach. The spatial statistics can be estimated from
the available borehole data, as we demonstrated in this
example.

Conclusions
It is a fact that the uncertainty of analysis of slope stability can be
reduced as long as the heterogeneity of a slope is adequately
characterized. Our proposed adaptive sampling approach, never-
theless, takes advantage of the conditional stochastic methodology
with our prior knowledge of the spatial variability of soil strength
parameters, the soil strength parameters of soil samples, and a
physical model to guide our sampling efforts. In this paper, we
demonstrate that using this sampling approach, we can sufficiently
characterize the effects of heterogeneity on slope stability analysis
using a small number of samples. Further, we can identify proba-
ble critical sections of slope, which deserves engineering control
measures. Thus, the cost for preventing the failure of a slope can
be greatly reduced.
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