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Abstract
Drawdown data from independent pumping tests have widely been used to validate the estimated hydraulic parameters from

inverse modeling or hydraulic tomography (HT). Yet, the independent pumping test has not been clearly defined. Therefore, the goal
of this paper is to define this independent pumping test concept, based on the redundant or nonredundant information about aquifer
heterogeneity embedded in the observed heads during cross-hole pumping tests. The definition of complete, moderate redundancy
and high nonredundancy of information are stipulated using cross-correlation analysis of the relationship between the head and
heterogeneity. Afterward, data from numerical experiments and field sequential pumping test campaigns reinforce the concept and
the definition.

Introduction
Characterization of aquifer hydraulic properties

is essential for groundwater resources management,
as well as groundwater contamination prevention
and remediation. Aquifers are inherently heterogeneous
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at a multiplicity of scales. Traditional aquifer analyses,
such as the Theis solution (Theis 1935) and Cooper-Jacob
approximation (Cooper Jr and Jacob 1946), nevertheless,
adopts aquifer homogeneity assumption for the sake of
parsimony even though they are comparing apples and
oranges as criticized by Wu et al. (2005). In addition,
Wu et al. (2005), Wen et al. (2010), Huang et al. (2011),
and Yeh et al. (2015) found that the estimates from
the traditional analyses are scenario-dependent—the
estimates vary from one test to another test. This
scenario-dependency was also reported by Huang et al.
(2011) and Yeh et al. (2015) in the estimated parameter
fields derived from calibrating highly parameterized
conceptual models.

Over past decades, a new generation of aquifer
test technology, hydraulic tomography (HT), has been
developed to overcome the difficulties associated with
the traditional aquifer tests and to map heterogeneous
hydraulic properties of aquifers (e.g., Yeh and Liu 2000;
Liu et al. 2002; Brauchler et al. 2003; Li et al. 2005; Zhu
and Yeh 2005, 2006; Illman et al. 2007, 2008, 2010, 2012,
2015; Liu et al. 2007; Fienen et al. 2008; Hao et al. 2008;
Ni and Yeh 2008; Castagna and Bellin 2009; Ni et al.
2009; Xiang et al. 2009; Yin and Illman 2009; Cardiff and
Barrash 2011; Liu and Kitanidis 2011; Mao et al. 2011,
2013c; Berg and Illman 2011a; Sun et al. 2013; Zhao
et al. 2015; Tso et al. 2016). After decade’s applications,
HT has been accepted as a mature and viable technology
for mapping aquifer heterogeneity distributions. HT can
obtain hydraulic property estimates that can yield better
predictions of flow and solute transport in aquifers than
those by traditional approaches (Illman et al. 2008, 2009,
2010, 2012) and Ni et al. (2009).
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Despite this evidence, Bohling and Butler (2010)
argued that the drawdown data of the sequential pumping
test (or HT) are not necessarily independent records
(i.e., redundant information) according to the reciprocity
principle (Bruggeman 1972). The reciprocity principle
states that the drawdown-time behavior at location A
caused by pumping at location B is the same as that
at location A due to pumping at location B. In other
words, the head observed at Well A due to pumping at
Well B is affected by the same heterogeneity as is the
head observed at Well B induced by pumping at Well A.
Specifically, the heads collected from the two pumping
tests carry redundant information about the aquifer
heterogeneity.

Redundant/nonredundant head data sets play critical
roles on the inverse modeling efforts as well. For instance,
Huang et al. (2011) (Figure 5) reported that using 11
wells and sequentially increasing the number of pumping
events in a synthetic aquifer, the estimated transmissivity
(T ) field continuously changed, improved, and stabilized
at a T field, which closely resembles the reference
field. That is, the head data sets from 10 observation
wells induced by one pumping test cannot conclusively
define the heterogeneity of an aquifer unless data sets
from additional pumping tests are included. Consequently,
collecting head data sets, which carry new information
about the heterogeneity, becomes an important issue in
model calibration practices. This importance was also
advocated in Mao et al. (2013a, 2013b, 2013c), which
reported the nonredundant information can improve the
estimates about the heterogeneity in variably saturated
zones.

Similarly, nonredundant head information is critical
for validating estimated parameters from inverse model-
ing efforts. For example, Illman et al. (2007, 2008) and
Liu et al. (2007) validated the estimated parameter fields
from HT using independent pumping test data in sandbox
experiments. Berg and Illman (2011b) carried out valida-
tion of HT in the field aquifer. Huang et al. (2011) also uti-
lized additional pumping tests to verify the estimates from
HT of a field aquifer. Likewise, using independent pump-
ing tests data, Zhao et al. (2016) and Zhao and Illman
(2017, 2018) evaluated hydraulic property estimates from
HT analyses with the prior geologic information. Indepen-
dent pumping test data sets were employed by Zha et al.
(2015, 2016) to confirm HT estimates for fractured granite
rock mass.

The independent pumping tests reported in the
previous studies generally were conducted at the wells
which were used as the head observation wells in their
HT calibration. Because of this fact, the heterogeneity
information contained in the heads induced by the
independent pumping tests at these wells likely have
been explored by the eariler HT analysis. The validation,
therefore, may not be conclusive. For this reason, there is
a need to define the independent pumping test or to clarify
the redundant and nonredundant information about aquifer
heterogeneity embedded in observed head data sets. In

order to investigate these issues, this paper first uses cross-
correlation analysis to define completely, moderately
redundancy and highly nonredundancy of head data. Then,
it uses datasets from 11 pumping tests with 11 wells in
the heterogeneous synthetic and field aquifers to derive the
best-estimated fields using the HT analysis. Afterward, the
best-estimated T and storage coefficient (S ) fields are then
validated to corroborate the definition of redundancy and
nonredundancy.

Completely, Moderately Redundant, and Highly
Nonredundant Information

Cross-Correlation Analysis
A quantitative means to define completely, mod-

erately redundant, or highly nonredundant information
about heterogeneity embedded in the head observation is
the cross-correlation between the observed head and het-
erogeneity in every part of an aquifer. According to Sun
et al. (2013) and Wu et al. (2005), in order to analyze the
relationship between the head and lnT and that between
the head and lnS values in a heterogeneous aquifer, lnT
and lnS at every location of the aquifer can be treated
as random variables with some spatial correlation with
others in the adjacent locations. Specifically, lnT = Y + y
and lnS = Z + z , where Y and Z are mean values, and y
and z denote perturbations, which represent spatial vari-
ability or uncertainty due to lack of measurements of these
parameters. For the same reason, the head is represented
by H = H + h, where H is the mean and h is the pertur-
bation caused by spatial variability or uncertainty of the
parameters. Using the first-order approximation, the head
perturbation at the location xi at a given time t is then
given as

h (xi , t) ≈
[

∂H (xi , t)

∂ ln T
(
xj

)
∣∣∣∣∣
Y,Z

]
y

(
xj

)

+
[

∂H (xi , t)

∂ ln S
(
xj

)
∣∣∣∣∣
Y,Z

]
z
(
xj

)
h = Jhyy + Jhzz (1)

where y(xj ) and z (xj ) are perturbation of lnT and lnS
at location xj and j = 1, . . . , N, which is the total
number of parameters in the aquifer (i.e., number of
elements in a finite element domain); J hy(xj , xj , t) and
J hz(xj , xj , t) are the sensitivity of h at location xi at a
given time t with respect to lnT and lnS perturbation at
location xj . Here, the Einstein’s summation convention
over the repeated suffix is used. That is to say, the head
perturbation at (xi , t) is a weighted sum of perturbation
of parameters lnT and lnS everywhere in the aquifer. The
weights are the corresponding sensitivity values. Since
the perturbations of the parameters are unknown, it is
best to adopt the aforementioned stochastic representation
of these parameters. Using the assumption that lnT and
lnS are mutually independent of each other, the cross-
covariance matrices between h and y and between h and
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z are.
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(2)

Ryy (xi , xj ) and Rzz (xi , xj ) are covariance matrices of
perturbation of lnT and lnS , which are modeled with
the same exponential function using the same corre-
lation scales in x and y directions. The correspond-
ing head covariance matrix based on Equation 1 is
given as

Rhh
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The components of Rhh (xi , xj , t) at xi = xj are the
head variances,σ 2

hh (xi , t), which represents the uncer-
tainty in the head at the location xi at a given time t
due to the unknown heterogeneity in the aquifer. The
cross-covariances, Rhy and Rhz , are then normalized by
the square root of the product of the variances of h at
(xi , t) and lnT or those of h at (xi , t) and lnS to obtain
their corresponding cross-correlation ρhy , ρhz at location i
and j at time t .
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where σ 2
h (xi , t) is the head variance at xi and t ; σ 2

y

and σ 2
z are the variances of lnT and lnS , respectively.

The cross-correlation (dimensionless) represents how the
head perturbation at the location xi at a given time t is
influenced by the lnT or lnS perturbation at a location
xj in an ensemble sense. With a given mean T, S and
a pumping rate, these cross-covariances are evaluated
numerically using the HT inverse model by Zhu and Yeh
(2005).

To elucidate the completely, moderately redundant
and highly nonredundant information using the cross-
correlation, Equation 4 was evaluated using numerical
simulations. For this simulation, a square-shaped synthetic
two-dimensional confined aquifer (200 m × 200 m) was
discretized into 100 × 100 square elements with 2 m in
length and width. The initial and boundary conditions
were 100 m. A constant discharge of 0.0006 m3/s was
imposed at a pumping well and heads were collected at
an observation well. These two wells were separated by
a distance of 40 m (see Figure 1). The geometric mean

values of T and S of the aquifer were 0.000116 m2/s
and 0.00014, respectively. The variance of lnT was 1.0
and the variance of lnS is 0.2. Covariance functions of
T and S were assumed to be the exponential model with
isotropic correlation scales in x and y directions equal to
30 m. These input parameters were those used by Sun
et al. (2013). Cross-correlation analyses of four cross-
hole pumping tests were conducted using the synthetic
aquifer.

The cross-correlation distribution at a late time
pumping test is illustrated in Figure 1a. As shown in the
figure, the cross-correlation coefficient (ρhy ) between the
head at the observation well and lnT everywhere forms
two symmetrical kidney-shaped humps (where cross-
correlation values greater than 0.4) near the observation
well (the white circle in the figure) and the pumping well
(the black circle). This means that the observed head is
dictated by the heterogeneity within these two humps.

If the locations of the pumping well and the obser-
vation well are exchanged (test 2, Figure 1b), the two
humps cover the same areas of the aquifer as those in
Figure 1a. That is, the observed heads in these two figures
are always dominated by the same variation of T in the
aquifer; the observed heads thus contain the same hetero-
geneity information. Specifically, the heads at the obser-
vation well in tests 1 and 2 carry completely redundant
(i.e., the same) information about the heterogeneity. This
corroborates the reciprocity principle.

In Figure 1c (test 3), the ρhy is plotted for the case
where the pumping well (the black circle in the figure)
locates at the same location as that in Figure 1a but the
observation well (the white circle) is moved to a new
location. To avoid boundary effects due to small domain
size, this relocation of the two wells was accomplished
by rotating the two wells by 45◦ from the horizon with
the pivot at the location (x = 100, y = 100). The shape
of the two kidney-shaped humps (where cross-correlation
values greater than 0.4) in Figure 1c remains the same as
those in Figure 1a and 1b. After moving the observation
well, the hump near the pumping well covers similar
areas of the aquifer as those in Figure 1a and 1b. To the
contrary, the hump near the observation well encompasses
a different portion of the aquifer. Thus, the observed
head will be dominated by the heterogeneity in this new
location while retains the influence of the heterogeneity in
the hump near the pumping well. This information content
of the observed head is, thus, called the moderately
nonredundant information.

As illustrated in Figure 1d, once the locations of the
pumping and the observation well (i.e., the black and
the white circle, respectively in the figure) are moved
to completely different locations from those in Figure 1a
and 1b, the two humps cover two different parts of the
aquifer accordingly. Since the head at the observation
well is dictated by the heterogeneity in the two humps,
the heterogeneity information ingrained in the observed
head will be highly different from those in Figure 1a
and 1b. As a consequence, the head data from this new
pumping and observation locations are referred to as

NGWA.org J.-C. Wen et al. Groundwater 3



Figure 1. Contour maps of cross-correlation coefficient between the head at the observation well and lnT everywhere in the
aquifer while the flow reached steady-state. The white circle represents the location of observation well, and the black circle
represents the location of the pumping well. (a) Test 1, (b) Test 2, (c) Test 3, (d) Test 4.

highly nonredundant information in comparison with the
head data from the well setup in Figure 1a and 1b.

We emphasize the fact that any head (except at the
constant head boundaries) in an aquifer is correlated with
(or sensitive to) hydraulic conductivity at every part of
the aquifer but with different degrees. For this reason, the
above definitions are solely built upon the high correlation
areas (i.e., the contour level of 0.4 and above) in the cross-
correlation maps of two pairs of pumping and observation
locations. Since the head in the observation is always
influenced by heterogeneity in every part of the aquifer,
the term, highly nonredundancy, is most appropriate to
avoid confusion.

Furthermore, it is necessary to stress the fact that
the cross-correlation analysis rests upon the ensemble
statistics concept since the heterogeneity is not known.
Specifically, the head perturbation in Equation 1 depends
on the magnitudes of its sensitivity to every parameter
in the aquifer as well as the magnitude of the param-
eter perturbation. However, the true parameter field is
unknown such that the sensitivity has to be evaluated
at the mean value of the parameter field. By the same
token, the parameter perturbation is undetermined, and

the cross-correlation analysis thus relies on the variance
of the parameters and in turn, the head variance, rather
than their perturbations. That is to says, the uncertain-
ties of the parameters (all possible parameter perturbation
around its mean in a statistical sense) at the locations
with the same cross-correlation values contribute equally
to the uncertainty of the head at the observation well (i.e.,
all possible head perturbations in a statistical sense at this
observation well). The actual contribution to the head per-
turbation at the observation well depends on the actual
parameter perturbation at these locations, rather than the
variance of the parameters. That is, in one realization of
the heterogeneous aquifer, the contribution to the observed
head perturbation from a location depends on not only
the cross-correlation but also the parameter perturbation.
Note that the reciprocity principle holds for one single
realization since the two kidney shapes of high cross-
correlations are symmetrical around the observation and
pumping wells. Due to this symmetry, different parameter
perturbations in each kidney area still contribute equally
to the observed head regardless of the pumping and the
observation well locations.
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With the ensemble nature of the cross-correlation
analysis in mind, the following numerical and field
experiments are conducted to test and verify the above
definitions of completely redundant, moderately redun-
dant, and highly nonredundant information.

Pumping Test Experiments at the Field Site
The numerical experiment and field experiments

are built on the sequential pumping test experiments
conducted at a field site on the north side of the National
Yunlin University of Science and Technology (NYUST)
campus in Taiwan. Detailed information for the field site
(geological information, wells, setting conditions, etc.) can
be found in Wen et al. (2010), Huang et al. (2011), and
Chen et al. (2019). The aquifer was considered a confined
aquifer, according to Wen et al. (2010). In this site, 17
fully penetrating wells were installed over an area of 144
m2. These wells were divided into two categories; 11
wells in 0.1016 m (4′′) diameter, and 6 wells in 0.0508 m
(2′′) diameter, respectively. A detailed setup can be found
in Figure 2. These wells were named as BH01, BH02
through BH11, and BH12 through BH17, respectively.
Previous studies (Wen et al. 2010; Huang et al. 2011;
Chen et al. 2019) used the data sets obtained from the 11
wells in 4′′ diameter but the 6 wells in 2′′ diameter. This
was due to these wells in 2′′ diameter were primarily used
for water quality monitoring. After 2010, these wells were
used as observation wells in sequential pumping tests.

A total of 11 pumping tests were conducted in
sequential order. A submersible pumping system (Grund-
fos Pumps Corporation), including the MP1 type of the
water pump and variable-frequency drive, was utilized for
the pumping tests in 2010 (Chen et al. 2019). Pressure
transducers with a data logger (precision of 1 mm) were
installed in all the 17 wells in order to collect the draw-
down data. All pumping tests were conducted when there
was no precipitation. In each pumping test, one of the 11
wells was pumped, and the heads were collected at the
remaining 16 wells (Figure 2). Each pumping test lasted
for 72 h to reach a steady flow condition. A new pump-
ing test at another well began only after the groundwater
level was fully recovered from the last test. Overall, 11
pumping tests were carried out, yielding 11 sets of draw-
down data that included 176 drawdown-time curves (110
sets of 11 wells in 4′′ diameter, and 66 sets of 6 wells in
2′′ diameter—the pumping wells were excluded as previ-
ously mentioned). The pumping tests conducted in 2010
lasted from August 2010 to February 2011. The pump-
ing rates of the 11 tests varied from 9.42 to 12.96 m3/d
(Table 1) while a constant pumping rate was maintained
for each test.

Pumping Tests in the Synthetic Aquifer
In order to create drawdown-time data sets for the

synthetic aquifer mimicking the field experiments, a
simulation domain (30 m × 30 m, Figure 2) was selected
in such a way such that it includes all the 17 wells of

the field site. The domain was then discretized into 900
elements of 1 m × 1 m. All the 17 wells were distributed
within the red square zone, which has 441 elements as
shown in Figure 2. The boundary and initial conditions
were the arithmetic average of the observed static water
level (46.44 m) of the 11 wells in 4′′ diameter of the field
champing.

The distribution of T and S values of the synthetic
aquifer were generated using the spectral method (Gutjahr
1989; Robin et al. 1993) with the following spatial
statistics: The lnT (natural logarithm of T ) field had a
mean of 2.430, and a variance of 1.0; The lnS (natural
logarithm of S ) field had a mean of −5.075, a variance of
0.599; the spatial structure was described by an isotropic
exponential covariance function with a correlation scale
of 5 m in both directions. These spatial statistics were
derived from Huang et al. (2011). The generated reference
field of T and S are shown in Figures 4c and 5c.
Afterward, the forward simulation was conducted using
the VSAFT2 (variably saturated flow and solute transport
in 2D, available at http://tian.hwr.arizona.edu/downloads)
(Yeh et al. 1993). The pumping rates were the same as
those of the field experiments.

From both the field experiment and the simulated
experiment in the synthetic aquifer, 176 drawdown data
(110 sets of 11 wells in 4′′ diameter, and 66 sets of 6
wells in 2′′ diameter) were collected from the 11 pumping
tests. A total of 110 observed drawdown-time curves were
selected for estimating the T and S fields. The remaining
66 drawdown data were used for validation modeling (i.e.,
to test the ability of the estimated T and S field for
predicting the head fields under different pumping tests).

Best-Estimated T and S Fields
For testing and verifying the definitions of redun-

dancy of the head information, the head data sets from
the field experiments and numerical experiments from
the synthetic aquifer were utilized to estimate the T and
S of the corresponding aquifers. The estimation was car-
ried out using HT analysis included in VSAFT2; the HT
analysis uses the SimSLE inverse algorithm, which has
described in numerous publications. Please refer to the
work by Xiang et al. (2009) for details.

Selection of drawdown-time data from a well hydro-
graph for the HT analysis adopted the sampling strat-
egy suggested by Sun et al. (2013). That is, since the
drawdown is most sensitive to change in S at the early
time of the drawdown-log time curve, three data points
at small time intervals were selected at an early time,
and the other four points were distributed over the rest
of drawdown-time curve (i.e., seven drawdown values at
different times). Details of the sampling method can be
found in Chen et al. (2019). Figure 3 shows that the pres-
sure heads were selected based on different time periods
for each drawdown curve.

The mean absolute error (L1 norm), mean square
error (L2 norm), and linear regression analysis with a
standard correlation coefficient (COR, r) (0 ≤ |r | ≤ 1)
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Figure 2. Well locations on NYUST campus site; two-dimensional hydrogeological numerical modeling. Each grid is
1 m × 1 m, the total model domain is 30 m × 30 m, and the boundary conditions (blue lines) are the prescribed head. The area
indicated by the red square is 21 m × 21 m (441 grids) is the focus of the discussion in this paper.

Table 1
Control Conditions of the Sequential Pumping Tests (Year 2010)

Observation Wells

Pumping
Well Number

Pumping Rates
Q (m3/d) 4′′ Diameter 2′′ Diameter

BH01 11.84 BH02, 03, 04, 05, 06, 07, 08, 09, 10, 11 BH12, 13, 14, 15, 16, 17
BH02 12.42 BH01, 03, 04, 05, 06, 07, 08, 09, 10, 11
BH03 11.76 BH01, 02, 04, 05, 06, 07, 08, 09, 10, 11
BH04 12.86 BH01, 02, 03, 05, 06, 07, 08, 09, 10, 11
BH05 12.83 BH01, 02, 03, 04, 06, 07, 08, 09, 10, 11
BH06 12.74 BH01, 02, 03, 04, 05, 07, 08, 09, 10, 11
BH07 12.96 BH01, 02, 03, 04, 05, 06, 08, 09, 10, 11
BH08 12.68 BH01, 02, 03, 04, 05, 06, 07, 09, 10, 11
BH09 12.81 BH01, 02, 03, 04, 05, 06, 07, 08, 10, 11
BH10 9.42 BH01, 02, 03, 04, 05, 06, 07, 08, 09, 11
BH11 10.68 BH01, 02, 03, 04, 05, 06, 07, 08, 09, 10

were used as the performance criteria for the analysis in
this study.

Synthetic Aquifer
Before analyzing the field experimental data sets,

we determined the minimum number of pumping tests
required to obtain the best-estimated fields in the synthetic
aquifer first. For this purpose, we first randomly selected
two tests (each test involves pumping at one well
and observed drawdowns at another well to obtain
drawdown-time data, and we have two drawn-time data
sets), and we named the two drawdown-time data sets
as D#2. Afterward, we added another well, chosen
arbitrarily. Now, we have three wells; while pumping
at each well, we observe drawdowns at the other two
wells, and thus the number of the datasets increases to 6.
This data set is then called D#3. In the case of D#4, we
have four wells, we pump each one of the four wells
and monitor the drawdown at the other three wells, and we
have a total of 12 drawdown-time data sets. This addition

of pumping tests, as well as the nomenclature of the data
sets, was continued until the total number of pumping tests
reached 11, and the total number data sets became 110,
which is the final data set, called D#11. Table 2 lists the
wells and the number of drawdown-time curves associated
with each dataset.

Subsequently, inverse modeling exercises using each
data set were carried out. The scatter plots and evaluation
criteria for the estimated lnT and lnS fields were
calculated with respect to the reference T and S fields.
While the data sets were used to estimate T and S of 900
elements but only those around the wells (441 elements)
were evaluated for the best-estimated field.

The scatter plots of the best-estimated lnT and lnS
fields vs. those of the reference field as well as associated
L1, L2, and COR are shown in Figures 4a and 5a,
respectively. These figures show that the estimated and
reference lnT and lnS values were distributed along the
45◦ line, indicative of unbiased estimates but with some
degree of scattering. The COR of lnT and lnS fields were

6 J.-C. Wen et al. Groundwater NGWA.org



Figure 3. Concept plot of the sampling method.

0.832 and 0.811, respectively. The best-estimated T fields
are illustrated in Figure 4b; the S fields are displayed in
Figure 5b. These best-estimated fields were the result of
using dataset D#9. Using D#10 and D#11 led to better
estimate fields but the dataset from additional two wells
(BH04 and BH10) of these two data sets were reserved
for validation purpose to be discussed later.

Field Experiments
With regard to the field experiments, the best-

estimated T and S fields were selected using the same
selection approach as in the synthetic aquifer but a
different evaluation criterion since the field experiment
did not have any known reference field. Specifically, they
were determined according to the relative improvements
in scatter plots and the evaluation criteria of the estimated
lnT and lnS fields between the consecutive pairs of
data sets of the previous-current, and current-following
pumping wells (e.g., D#2 vs. D#3, and D#3 vs. D#4). That
is, once there are no significant differences in the estimates
using different data sets, the estimated fields are regarded
as the best estimates. For example, we compared the

scatter plot of the estimated lnT using D#8 vs. those using
D#9 (Figure 6a) and the scatter plot of the lnT estimates
using D#9 vs. those using D#10 (Figure 6b). According to
Figure 6a, the estimates using D#8 are closely correlated
with those using D#9 as indicated by L1, L2, slope, and
intercept of the regression line. On the other hand, the
estimates using D#10 appears to be different from the
estimates based on D#9 according to L1, L2, slope, and
intercept of the regression line.

A comparison of the scatter plot of the estimated lnS
of D#8 vs. that of D#9 (Figure 6c) and the scatter plot
of the estimated from D#9 vs. the estimates from D#10
(Figure 6d) indicates that estimates from all the three data
sets are similar.

The spatial distributions of T estimates for the three
data sets are illustrated in Figure 7a, 7b, and 7c, while
those of the corresponding S estimates are displayed in
Figure 8a, 8b, and 8c. They all resemble each other. Based
on these comparisons, we chose the estimated T and S
fields (Figures 7b and 8b) using D#9 data sets as our best
estimates for the field experiment. They will be used for
the validation analysis.

Validation
Here, the validation means the assessment of the

performance of the best-estimated T and S fields for
predicting the evolution of drawdown fields induced by
various pumping tests, which may or may not be used in
the inversion process. This validation allows illustration
and test of the previously defined completely redundant,
moderately redundant, and highly nonredundant data set
concept.

For the validation, the predictions used the same sim-
ulation domain, grids, initial and boundary conditions
(46.44 m) discussed previously. Four cases were exam-
ined. Specifically, Case 1: Nine wells were used as either
pumping or observation wells. Simulated heads at eight
observation wells (excluding the pumping well) due to
each pumping from the nine pumping wells were selected
for the validation (see Table 2, D#9). Because all these 72

Table 2
Datasets of the Pumping Wells in the Inverse Modeling Using the HT in Both the Synthetic and Field

Aquifers

Data Sets of
Pumping Wells Pumping Wells’ Number Total Data

D#2 BH06, 08 2
D#3 BH06, 08, 01 6
D#4 BH06, 08, 01, 07 12
D#5 BH06, 08, 01, 07, 09 20
D#6 BH06, 08, 01, 07, 09, 03 30
D#7 BH06, 08, 01, 07, 09, 03, 11 42
D#8 BH06, 08, 01, 07, 09, 03, 11, 02 56
D#9 BH06, 08, 01, 07, 09, 03, 11, 02, 05 72
D#10 BH06, 08, 01, 07, 09, 03, 11, 02, 05, 10 90
D#11 BH06, 08, 01, 07, 09, 03, 11, 02, 05, 10, 04 110
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Figure 4. The best-estimated results based on the dataset of nine pumping wells (D#9) in the synthetic aquifer. (a) The scatter
plots of the lnT field between the estimated and reference values, (b) the estimated T fields, and (c) the reference of T field.
Nomenclature: the white squares denote the pumping well location. The open circles represent the six wells in 2′′ diameter
are not used in the inverse modeling (note: each plot has 441 data sets).

Figure 5. The best-estimated results based on the dataset of nine pumping wells (D#9) in the synthetic aquifer. (a) The scatter
plots of the lnS field between the estimated and reference values, (b) the estimated S fields, and (c) the reference of S field.
The nomenclature is the same as in Figure 4 (note: each plot has 441 datasets).

data sets were used in the HT inversion (or calibration),
this case represents the result of the completely redundant
data set.

Case 2: Heads at two wells (i.e., BH10 and BH04,
not included in the nine wells) were simulated due to
pumping from each of the nine pumping wells (as in
case 1). This is the moderately redundant scenario since
the two observation wells were not used in the calibration
albeit the nine pumping wells were used before.

Case 3: Simulated heads at 10 observation wells (the
nine wells plus either BH10 or BH04, depending which
one was used as pumping well) during each pumping test
at wells BH10 and BH04 were used for validation.

Case 4: BH10 and BH04 wells were pumped and the
six wells in 2′′ diameter were used as observation wells.
These 12 head data sets were used for the validation. As
discussed previously, the six wells in 2′′ diameter and
BH10 and BH04 were never used in inverse modeling. As
a result, they are highly nonredundant data sets for testing
the ability of the best-estimated T and S for prediction
(see Table 3).

Synthetic Aquifer
The validation results for the synthetic aquifer are

depicted in Figure 9a, 9b, 9c and 9d for cases 1, case 2,

case 3, and case 4, respectively. Figure 9a is the scatter
plots of the result for case 1 using the nine pumping
wells and eight observation wells (504 drawdown-time
data) as those used in the inverse modeling. As expected,
the data sets are completely redundant, and it is just
a reproduction of the calibration result as evident by
L1 = 0.013, L2 = 0.001, and COR = 1.000. That is, all the
heterogeneity embedded in the 504 data is fully exploited
in the best-estimated field. Although the simulated heads
based on the true field closely agree with those predicted
based on the best-estimated fields, the estimated fields are
not the same as those of the reference fields as evident in
Figures 4 and 5.

The scatter plot for case 2 (126 drawdown-time
data), using the nine pumping wells and two observation
wells, is displayed in Figure 9b. Since the pumping wells
were used and the two observations (BH10 and BH04)
were not used for deriving the best-estimated fields,
the performance statistics of the validation are slightly
worse (i.e., L1 = 0.053, L2 = 0.008, and COR = 0.998).
As suggested by the cross-correlation analysis, the
heterogeneity at the vicinity of the two observation wells
is not well characterized in the best-estimated fields.
This is likely the reason for the small scattering in the
scatter plot.
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Figure 6. Comparison between the scatter plots of the lnT fields among the datasets of (a) D#8 vs.D#9, and (b) D#9 vs. D#10
in the field aquifer. The scatter plots of the lnS fields among the data sets of (c) D#8 vs. D#9, and (d) D#9 vs. D#10 in the
field aquifer (note: each plot has 441 data sets).

Figure 7. Comparison of the estimated T fields among the dataset of (a) D#8, (b) D#9, and (c) D#10 in the field aquifer. The
nomenclature is the same as in Figure 4 (note: each plot has 441 data sets).

Similarly, Figure 9c shows the validation result for
case 3 (140 drawdown-time data), in which 20 observation
wells due to pumping test at two pumping wells (pumping
at BH10 and BH04) were predicted and compared with
those based on the reference field. The performance
criteria are: L1 = 0.062, L2 = 0.011, and COR = 0.998,
and they are slightly worse than those in case 1. Again,

the two pumping wells were not used in the HT inverse
analysis to derive the best-estimated field; therefore,
heterogeneity adjacent to the two wells was not fully
resolved in the best-estimated field. In turn, the validation
result is not as good as that in case 1. The result thus
substantiates the moderate redundancy defined by the
cross-correlation analysis.
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Figure 8. Comparison of the estimated S fields among the data set of (a) D#8, (b) D#9, and (c) D#10 in the field aquifer. The
nomenclature is the same as in Figure 4 (note: each plot has 441 data sets).

Table 3
Definitions of Four Cases Using the Redundant/Nonredundant Information in Both the Synthetic and Field

Aquifers (Note: Each Hydrograph Has Seven Sampling Points)

Cases Types
Total

Hydrography

Total
Drawdown-Time

Data

Case 1 Calibration: Using 9P (Pumping wells), each has 8O (Observation wells) 72 504
Case 2 Validation: Using 9P, each has 2O (i.e., BH10, BH04) 18 126
Case 3 Validation: Using 2P (i.e., BH10, BH04) × 10O (9O + BH04 or BH10) 20 140
Case 4 Validation: Using 2P (BH10, BH04) × (6O + [BH04 or BH10]) 14 98

Finally, the highly nonredundant data sets case 4 is
presented in Figure 9d. In this case, 98 drawdown-time
data from the two pumping tests at BH10 and BH04 were
simulated using the best-estimated T and S fields, and
the simulated well hydrographs from the six observation
wells in 2′′ diameter were selected to compare with those
simulated heads in the true fields. Because these two
pumping wells and the six wells in 2′′ diameter were
never used in the HT analysis, this data set is called
highly nonredundant, and the heterogeneity at the vicinity
of these wells is likely not well resolved. As such, they
have some effects on the predictions of the head behaviors
at these locations as explained in the cross-correlation
analysis. The resultant performance statistics (L1 = 0.109,
L2 = 0.025, and COR = 0.996) support this reasoning as
they are compared with those in cases 1, 2, and 3. Notice
that no noise or uncertainty in the initial and boundary
conditions are considered in these cases for the synthetic
aquifers. The deterioration of validation is merely from
the unresolved heterogeneity. That is to say, if data sets
from BH10, BH04, and the six wells in 2′′ diameter are
included in HT inverse analysis, the best-estimated fields
using D#9 data sets would be improved.

Field Experiments
The scatter plots of the validation results for cases

1, 2, 3, and 4 of the field experiments are illustrated
in Figure 10a, 10b, 10c, and 10d in the same style as
those in Figure 9 for the synthetic aquifer. It should

be emphasized that in the field experiment case, the
observed drawdown and measured pumping rates were
likely subjected to errors as well as noise. In addition,
the initial and boundary conditions used in the inverse
modeling are our estimates, which were approximations
of the true ones. Further, the flow in the field is
always fully three-dimensional, while our inverse model
is based on a two-dimensional depth-averaged model:
model error exists. For these reasons, the scatter plot
(Figure 10a) for case 1 (completely redundant data set)
shows that predicted drawdown based on the best-
estimated fields vs. the observed drawdown has larger
dispersion than that in the synthetic case (Figure 9a)
although overall it is unbiased as is the one in the synthetic
aquifer.

Scatter plots for cases 2, 3, and 4 for the field aquifer
exhibit a similar trend of deterioration of validation results
as those in the synthetic aquifer. That is, the more
nonredundant data sets are used in the validation, the
scattering becomes more apparent. Once again, the field
data corroborates the definitions of completely redundant,
moderately redundant, and highly nonredundant data sets
based on the cross-correlation analysis.

There are some differences in the validation results
of cases 3 and 4 (where BH04 and BH10 were used as
pumping wells) between the synthetic and field aquifers.
In the synthetic aquifer, the heads in the nine wells due
to pumping at BH04 (red circles in Figure 9c) or the
heads due to pumping at BH10 (blue circles in Figure 9c)
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Figure 9. Scatter plots with logarithmic axes of the validation applying the best-estimated T and S fields using the HT from
the synthetic aquifer to predict the drawdown-time data of pumping tests. (a) Case 1 (504 drawdown-time data), (b) case 2
(126 drawdown-time data), (c) case 3 (140 drawdown-time data), and (d) case 4 (98 drawdown-time data). (Note: the blue
points of cases 3 and 4 denote pumping at BH10, the red points of cases 3 and 4 denote pumping at BH04.)

behave in a similar fashion as do the heads in the six
wells in 2′′ diameter due to pumping at BH04 (red circles
in Figure 9d) or due to pumping at BH10 (blue circles).
Notice that BH04 and BH10, as well as the six wells in
2′′ diameter, were not used in the calibration.

To the contrary, in the field aquifer, the heads in
either the nine wells or the six new wells, induced
by pumping at BH04 well (red circles in Figures 10c
and 10d), appear consistently scattering more than those
triggered by pumping at BH10 well (blue circles in the
figures). This anomalous behavior seems to suggest that
BH04 and BH10 in the field aquifer are isolated from
each other; BH04 is more connected to the nine wells and
the new six wells than is BH10. This seems consistent
with the best-estimated T and S fields in Figures 7b and
8b. This implies that inclusion of the nine well data
induced by pumping at BH04 may significantly improve
the validation using the six wells in 2′′ diameter.

Conclusions
This paper explores the completely/moderately redun-

dant or highly nonredundant data sets for the HT

field campaign. Using the cross-correlation between het-
erogeneity anywhere of the aquifer and the observed
heads at an observation well, induced by pumping
at another well, the redundant and nonredundant con-
cepts are defined. Subsequently, these definitions were
tested and validated in a synthetic and a field aquifer
involving sequential pumping tests, and the results are
confirmative. Conclusions from the study are thus given
below.

A completely redundant head dataset is defined as
the head dataset that contains the same information
about the heterogeneity distribution in the aquifer as
does the one used earlier model calibration (or inverse
modeling) effort. Such a data set will agree closely with
the predicted heads based on the previously calibrated
parameter fields. Because of this reason, the head data
set will not yield improvements on the estimates from the
earlier calibration.

On the other hand, the head data set contains partially
new information about the heterogeneity of the aquifer
is then called moderately nonredundant. A comparison
of a moderately nonredundant head data set with the
predicted heads from the previous calibration would reveal
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Figure 10. Scatter plots of the validation applying the best-estimated T and S fields using the HT from the field aquifer
to predict the drawdown-time data of pumping tests. (a) Case 1 (504 drawdown-time data), (b) case 2 (126 drawdown-time
data), (c) case 3 (140 drawdown-time data), and (d) case 4 (98 drawdown-time data). (Note: the blue points of cases 3 and 4
denote pumping at BH10, the red points of cases 3 and 4 denote pumping at BH04.)

small deviations. Such a moderately nonredundant dataset
will further improve the estimates if it is included in
model calibration. A potential example of such a data
set is the head measurements at observation wells during
a sequential pumping test but omitted in the previous
calibration. Or the head measurements at existing wells
induced by pumping at newly installed wells that are not
used in previous model calibration efforts.

Lastly, data sets bring forth significantly new infor-
mation about the heterogeneity distribution of the aquifer
is defined as a highly nonredundant data set. Again, a
comparison of this data set with the head predictions
based on the previously calibration estimates would reveal
larger deviations than the comparison of the moderately
nonredundant data set. A potential example is the data set
created from new pumping and observation well locations
in the aquifer.

Overall, we believe the results of the study could help
the design of hydraulic tomography tests to collect more
information to enhance the characterizing of the aquifer
and to correctly validate estimates from any inverse
models.
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