ARTICLE

WILEY

Design, synthesis of tri-substituted pyrazole derivatives as promising antimicrobial agents and investigation of structure activity relationships

Guda Mallikarjuna Reddy^{1,2} | Jarem Raul Garcia² | Gutha Yuvaraja³ | Munagapati Venkata Subbaiah⁴ | Jet-Chau Wen^{4,5}

¹Ural Federal University, Chemical Engineering Institute, Yekaterinburg, Russian Federation

²Department of Chemistry, State University of Ponta Grossa, Ponta Grossa, Brazil

³Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China

⁴Research Centre for Soil & Water Resources and Natural Disaster Prevention (SWAN), National Yunlin University of Science & Technology, Douliou, Taiwan, Republic of China

⁵Department and Graduate School of Safety and Environment Engineering, National Yunlin University of Science & Technology, Douliou, Taiwan, Republic of China

Correspondence

Jarem Raul Garcia, Department of Chemistry, State University of Ponta Grossa, Ponta Grossa, Parana State, Brazil. Email: nagareddy.organic@gmail.com

1 | INTRODUCTION

There are many bacterial and fungal infections existed in the world. Consequently, persons are exposed to illnesses caused by microbial. Nowadays, in infirmaries, the bacterial infections predominantly Gram-positive bacteria (GPB) contagions remain the critical problem.^[1,2] Interestingly, majority of microbes are isolated from intensive care units, particularly, GPB isolation percentage is more than other bacteria.^[3] In most circumstances, the protected system of healthy humans can manage pathogenic attacks powerfully. But those

Abstract

The major diseases spread in the environment only because of microbes. Even, intensive care units in the hospitals are polluted by microorganisms, particularly, Gram-positive bacteria. Although many antibiotics are existed, there is a need to develop up to date microbial-resistant agents. Hence, the current study aimed to develop prominent antimicrobial drug-related compounds. Thus, a novel series of tri-substituted analogs and their intermediates were synthesized. In addition, total new compounds were screened for their antimicrobial assay and identified as the most efficient biologically active compounds. Moreover, minimal inhibitory antimicrobial activity and appropriate structure activity relationships were investigated. From the results it was observed that, viability of Gram-positive bacteria was most powerfully affected by all active compounds. Finally, this research demonstrated that, these biologically energetic amalgams can be utilized for further preclinical studies with the ambition of standing unique inventive drugs.

systems only control the damage of cells, but not cure. Thus, use of antibiotics is raising and parallel to this, antibacterial opposition has been increasing to hazardous levels in all parts of the world.^[4,5] On the other hand, the frequency of fungal poisons has progressively increased from the last 20 years and presents a risky threat to people health, specifically in immunocompromised humans, like those experiencing organ exchanges or antitumor chemotherapy and acquired immunodeficiency syndrome patients.^[6–8] In current years, the investigation has been dedicated on the enlargement of innovative antimicrobial stuffs, those can act over structure design and novel targets, overcoming the difficult of antibiotic resistance.^[9–12]

Azole derivatives particularly, pyrazoles retain pharmacological and biotic properties.^[13] Mostly in the farming field, pyrazole core is generally measured as a vital active part of some fungicidal,^[14,15] insecticidal,^[16] antiviral,^[17] and acaricidal molecules.^[18] For example, marketable pesticide Tebufenpyrad and Tolfenpyrad^[19] have pyrazole moiety as a basic core. In addition, fungicide Pyraclostrobin^[20] is contained a pyrazole component. A short time ago, Dai et al reported a novel series of bispyrazole derivatives displayed worthy antiproliferative activity.^[21] Besides, pyrazole-contained drugs are present in top-selling medicines, displayed antidepressive, antihyperglycemic, antispasmodic, antibacterial and antiinflammatory actions.^[22] Well-known samples are Celecoxib^[23] (Celebrex) and Sildenafil^[24] (Viagra). Products of pyrazoles have been exposed to possess diverse properties including, but not restricted to, being antitumor.^[25] antidiabitic,^[26] anti-inflammatory,^[27] antiarrhythmic,^[28] monoamine oxidase inhibiting,^[29] sPLA2-inhibitory.^[30] antipyretic,^[31] analgesic,^[32] anticonvulsant,^[33] and antimicrobial.^[34] In fact, preparation method equally represents a pivotal role to discover the biologically active pyrazoles and their belongings. There are different synthetic approaches reported.^[35–39] All those showed their unique advantageous.

Based on the prior information and our continued interest to develop biologically active substances^[40–43]; we have tried synthesizing pyrazole derivatives to achieve potent antimicrobial agents. All the compounds were characterized by spectroscopic techniques. Total outcome compounds were evaluated for their antibacterial and antifungal assays. In addition, structure activity relationships are also discussed.

2 | EXPERIMENTAL

2.1 | General

Total primary components and reagent were pure and commercially available. For ¹H NMR, 400 MHz and for ¹³C NMR 100 MHz were used. Dimethyl sulfoxide and chloroform deuterated mixed solvent was used to record both nuclear magnetic resonance (NMR) spectra's. Tetramethylsilane (TMS) as a reference sample. Melting point statistics were distinguished with micro melting point operator and were uncorrected. High-resolution mass spectrometry (HRMS) information was calculated with the help of electrospray ionization. The intermediate one (**5**) was prepared according to the literature procedure.^[44,45]

2.1.1 | Synthetic method of compound 6

Similar volume of intermediate compound **5** (1 mmol) and semicarbazide (1 mmol) were taken in a round bottom flask which already contained methanol (5 mL), NaOH (1.5 mmol) and refluxed for 5 to 8 hours. After completion of the product formation (checked by thinlayer chromatography), the reaction crud was transferred onto crushed ice. As a result, solid on the bottom of the water, which was collected by filtration and purified by recrystallization from 2-propanol resulted in compound **6**.

3-(1-Oxo-1H-isochromen-3-yl)-5-phenyl-4,5-dihydro-1H-pyrazole-1-carboxamide (**6**): Pale yellow solid; yield 85%; mp 173-175°C; ¹H NMR (400 MHz, CDCl₃ + DMSO-d₆): δ 3.18 (dd, H_X, 1H, J_{MX} = 12.0 Hz, J_{AX} = 6.6 Hz), 3.88 (dd, H_M, 1H, J_{MX} = 12.0 Hz, J_{AM} = 14.7 Hz), 5.28 (dd, H_A, 1H, J_{AX} = 6.6 Hz, J_{AM} = 14.7 Hz), 6.91-7.81 (m, 10H, Ar—H and C₄—H), 8.66 (bs, 2H, NH₂) ppm; ¹³C NMR (100 MHz, DMSO-d₆): δ 43.4 (C-4), 67.6 (C-5), 121.5, 122.9, 125.2, 127.4, 128.2, 129.2, 131.4, 132.2, 134.1, 136.5, 140.2, 143.2 (aromatic carbons), 156.1 (C-3), 178.3 (C=O), 182.3 (C=O–NH₂) ppm; HRMS: *m*/*z* Calcd. for C₁₉H₁₆N₃O₃ (M + H)⁺ 334.1192; Found 334.1190.

2.1.2 | Dehydrogenation method belongs to the compound 7

In xylene (7 mL), intermediate **6** (1 mmol) and chloranil (2 mmol) were dissolved. Then, the set up was kept to reflux for 24 hours. After the product formation, the crud was washed with 5% sodium hydroxide solution followed by the separation of organic part, dried by using anhydrous sodium sulfate and organic solvent was eliminated in vacuo. The obtained solid was purified by using 2-propanol solvent.

3-(1-Oxo-1H-isochromen-3-yl)-5-phenyl-1H-pyrazole-1-carboxamide (7): Light yellow solid; yield 81%; mp 149-151°C; ¹H NMR (400 MHz, CDCl₃ + DMSO-d₆): 7.32-7.71 (m, 11H, Ar—H and C₄·_H), 8.51 (bs, 2H, NH₂) ppm; ¹³C NMR (100 MHz, DMSO-d₆): δ 121.6, 123.4, 124.5, 125.1, 126.3, 128.2, 129.0, 130.1, 133.3, 135.2, 136.8, 139.0, 142.1, 144.8 (aromatic carbons), 155.3 (C–3), 176.4 (C=O), 181.2 (C=O–NH₂) ppm; HRMS: *m*/*z* Calcd. for C₁₉H₁₄N₃O₃ (M + H)⁺ 332.1035; Found 332.1031.

2.1.3 | Reaction method for the compounds 9(a-l)

Condensation reaction was done between the compound 7 (1 mmol) and araldehydes **8(a-l)** (1 mmol) in acetic acid (7 mL) under refluxtion for 8 to 10 hours. Then, the crude was poured into crushed ice and the solid was separated

²²⁹⁰ WILEY-

by filtration followed by washing with dilute hydrochloride solution. The resultant solid was recrystallized from propanol.

(*E*)-*N*-Benzylidene-3-(1-oxo-1*H*-isochromen-3-yl)-5-phenyl-1*H*-pyrazole-1-carboxamide (**9a**): Light yellow solid; yield 82%; mp 234-236°C; ¹H NMR (400 MHz, CDCl₃ + DMSO d_6): δ 6.69-7.84 (m, 16H, Ar–H), 8.91 (s, 1H, HC=NCO) ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 110.3, 112.9, 117.6, 120.1, 123.6, 124.4, 126.4, 127.7, 128.3, 128.8, 129.6, 129.9, 131.2, 134.5, 141.6, 143.4, 144.4, 146.5, 148.0 (aromatic carbons), 162.6 (HC=NH), 171.1 (CO–O), 180.4 (N–CO–N) ppm; HRMS: m/z Calcd. for C₂₆H₁₈N₃O₃ (M + H)⁺ 420.1348; Found 420.1346.

(*E*)-*N*-(4-Chlorobenzylidene)-3-(1-oxo-1H-isochromen-3-yl)-5-phenyl-1H-pyrazole-1-carboxamide (**9b**): Light yellow solid; yield 84%; mp 197-199°C; ¹H NMR (400 MHz, CDCl₃ + DMSO-d₆): δ 6.83-7.88 (m, 15H, Ar—H), 8.97 (s, 1H, HC=NCO) ppm; ¹³C NMR (100 MHz, DMSO-d₆): δ 110.2, 112.4, 118.2, 120.5, 122.9, 123.7, 126.3, 127.3, 127.9, 128.6, 129.2, 130.1, 131.4, 135.0, 142.1, 143.6, 145.6, 150.1, 151.5 (aromatic carbons), 163.2 (HC=NH), 170.3 (CO–O), 180.9 (N–CO–N) ppm; HRMS: *m*/*z* Calcd. for C₂₆H₁₇ClN₃O₃ (M + H)⁺ 454.0958; Found 454.0954.

(*E*)-*N*-(4-Methylbenzylidene)-3-(1-oxo-1H-isochromen-3-yl)-5-phenyl-1H-pyrazole-1-carboxamide (**9c**): Pale yellow solid; yield 78%; mp 221-223°C; ¹H NMR (400 MHz, CDCl₃ + DMSO-d₆): δ 2.23 (s, 3H, CH₃), 6.74-7.88 (m, 15H, Ar—H), 8.83 (s, 1H, HC=NCO) ppm; ¹³C NMR (100 MHz, DMSO-d₆): δ 19.6 (CH₃), 110.1, 112.4, 118.6, 120.2, 121.5, 123.4, 125.1, 126.3, 127.4, 128.3, 129.7, 131.4, 132.7, 134.1, 137.2, 140.3, 142.4, 145.6, 146.9 (aromatic carbons), 162.6 (HC=NH), 170.6 (CO–O), 180.4 (N–CO–N) ppm; HRMS: *m*/*z* Calcd. for C₂₇H₂₀N₃O₃ (M + H)⁺ 434.1505; Found 434.1502.

(*E*)-*N*-(2-*Aminobenzylidene*)-3-(1-oxo-1*H*-isochromen-3-yl)-5-phenyl-1*H*-pyrazole-1-carboxamide (**9d**): Light yellow solid; yield 72%; mp 184-186°C; ¹H NMR (400 MHz, CDCl₃ + DMSO-*d*₆): δ 6.73-7.79 (m, 15H, Ar—H), 8.85 (s, 1H, HC=NCO) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 109.3, 114.5, 116.8, 121.2, 122.7, 123.8, 124.7, 126.5, 127.0, 128.1, 129.5, 130.0, 130.9, 131.4, 133.7, 135.4, 140.2, 143.4, 145.1, 147.6, 148.4 (aromatic carbons), 161.5 (HC=NH), 169.4 (CO–O), 180.4 (N–CO–N) ppm; HRMS: *m*/*z* Calcd. for C₂₆H₁₉N₄O₃ (M + H)⁺ 435.1457; Found 435.1452.

(*E*)-*N*-(4-Hydroxybenzylidene)-3-(1-oxo-1H-isochromen-3-yl)-5-phenyl-1H-pyrazole-1-carboxamide (**9e**): Pale yellow solid; yield 71%; mp 227-229°C; ¹H NMR (400 MHz, CDCl₃ + DMSO-d₆): δ 6.81-7.73 (m, 15H, Ar—H), 8.93 (s, 1H, HC=NCO) ppm; ¹³C NMR (100 MHz, DMSO-d₆): δ 111.4, 114.3, 119.5, 121.3, 122.5, 124.1, 125.2, 126.3, 127.5, 128.3, 129.0, 131.3, 132.2, 134.6, 140.3, 142.9, 144.1, 146.2, 147.8 (aromatic carbons), 161.1 (H<u>C</u>=NH), 172.5 (<u>C</u>O–O), 181.4 (N–<u>C</u>O–N) ppm; HRMS: m/z Calcd. for C₂₆H₁₈N₃O₄ (M + H)⁺ 436.1297; Found 436.1296.

(*E*)-*N*-(4-Nitrobenzylidene)-3-(1-oxo-1H-isochromen-3-yl)-5-phenyl-1H-pyrazole-1-carboxamide (**9f**): Pale yellow solid; yield 80%; mp 190-192°C; ¹H NMR (400 MHz, CDCl₃ + DMSO-*d*₆): δ 6.91-7.89 (m, 15H, Ar–H), 8.90 (s, 1H, HC=NCO) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 111.3, 115.7, 118.0, 120.4, 121.3, 122.6, 124.1, 125.7, 126.9, 128.2, 129.0, 130.5, 131.1, 133.5, 140.2, 143.6, 146.9, 148.4, 150.2 (aromatic carbons), 162.9 (H<u>C</u>=NH), 171.2 (<u>CO</u>–O), 182.3 (N–<u>CO</u>–N) ppm; HRMS: *m*/*z* Calcd. for C₂₆H₁₇N₄O₅ (M + H)⁺ 465.1199; Found 465.1195.

(*E*)-*N*-(2-*Methylbenzylidene*)-3-(1-oxo-1*H*-isochromen-3-yl)-5-phenyl-1*H*-pyrazole-1-carboxamide (**9g**): Pale yellow solid; yield 72%; mp 202-204°C; ¹H NMR (400 MHz, CDCl₃ + DMSO-d₆): δ 2.21 (s, 3H, CH₃), 6.71-7.84 (m, 15H, Ar—H), 8.80 (s, 1H, HC=NCO) ppm; ¹³C NMR (100 MHz, DMSO-d₆): δ 19.6 (CH₃), 115.2, 117.1, 120.0, 121.3, 122.9, 123.3, 125.2, 126.1, 126.9, 127.5, 129.1, 130.4, 131.9, 132.6, 133.0, 136.1, 140.2, 142.2, 144.7, 146.0, 147.2 (aromatic carbons), 163.4 (HC=NH), 170.2 (CO–O), 181.5 (N–CO–N) ppm; HRMS: *m*/*z* Calcd. for C₂₇H₂₀N₃O₃ (M + H)⁺ 434.1505; Found 434.1503.

(*E*)-*N*-(4-*Aminobenzylidene*)-3-(1-oxo-1*H*-isochromen-3-yl)-5-phenyl-1*H*-pyrazole-1-carboxamide (**9h**): Light yellow solid; yield 74%; mp 206-208°C; ¹H NMR (400 MHz, CDCl₃ + DMSO-d₆): δ 6.70-7.82 (m, 15H, Ar–H), 8.86 (s, 1H, HC=NCO) ppm; ¹³C NMR (100 MHz, DMSO-d₆): δ 113.1, 116.4, 119.0, 120.4, 122.4, 123.7, 125.1, 126.4, 127.8, 128.6, 129.2, 132.2, 133.6, 135.2, 142.6, 143.1, 145.7, 147.1, 148.9 (aromatic carbons), 163.4 (H<u>C</u>=NH), 172.3 (<u>CO</u>–O), 180.1 (N–<u>CO</u>–N) ppm; HRMS: m/z Calcd. for C₂₆H₁₉N₄O₃ (M + H)⁺ 435.1457; Found 435.1456.

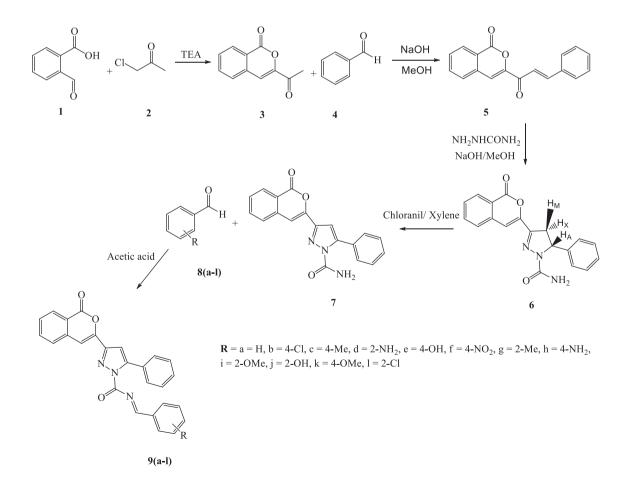
(*E*)-*N*-(2-Methoxybenzylidene)-3-(1-oxo-1H-isochromen-3-yl)-5-phenyl-1H-pyrazole-1-carboxamide (**9i**): Pale yellow solid; yield 70%; mp 189-191°C; ¹H NMR (400 MHz, CDCl₃ + DMSO-d₆): δ 3.53 (s, 3H, OCH₃), 6.76-7.82 (m, 15H, Ar—H), 8.85 (s, 1H, HC=NCO) ppm; ¹³C NMR (100 MHz, DMSO-d₆): δ 59.2 (OCH₃), 110.2, 115.6, 119.2, 120.7, 121.2, 123.4, 124.5, 125.5, 126.1, 127.6, 128.4, 129.8, 130.2, 131.2, 132.6, 134.1, 137.4, 140.3, 143.5, 144.9, 146.0 (aromatic carbons), 160.4 (HC=NH), 168.2 (CO–O), 180.3 (N–CO–N) ppm; HRMS: *m*/*z* Calcd. for C₂₇H₂₀N₃O₄ (M + H)⁺ 450.1454; Found 450.1451.

(*E*)-*N*-(2-Hydroxybenzylidene)-3-(1-oxo-1H-isochromen-3-yl)-5-phenyl-1H-pyrazole-1-carboxamide (**9j**): Pale yellow solid; yield 71%; mp 194-196°C; ¹H NMR (400 MHz, CDCl₃ + DMSO- d_6): δ 6.90-7.85 (m, 15H, Ar—H), 8.89 (s, 1H, HC=NCO) ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 109.2, 116.1, 118.2, 120.4, 123.2, 124.2, 125.1, 126.6, 127.2, 128.5, 129.2, 131.4, 132.5, 133.9, 135.4, 137.2, 141.3, 144.8, 146.1, 147.4, 149.2 (aromatic carbons), 160.4 (HC=NH), 170.6 (<u>C</u>O–O), 182.2 (N–<u>C</u>O–N) ppm; HRMS: m/z Calcd. for C₂₆H₁₈N₃O₄ (M + H)⁺ 436.1297; Found 436.1294.

(*E*)-*N*-(4-Methoxybenzylidene)-3-(1-oxo-1H-isochromen-3-yl)-5-phenyl-1H-pyrazole-1-carboxamide (**9k**): Pale yellow solid; yield 83%; mp 218-220°C; ¹H NMR (400 MHz, CDCl₃ + DMSO-d₆): δ 3.54 (s, 3H, OCH₃), 6.81-7.79 (m, 15H, Ar—H), 8.86 (s, 1H, HC=NCO) ppm; ¹³C NMR (100 MHz, DMSO-d₆): δ 59.6 (OCH₃), 1101, 112.4, 119.6, 121.4, 122.7, 123.5, 124.9, 126.2, 127.4, 128.6, 129.6, 131.0, 132.7, 134.2, 143.3, 145.2, 147.4, 148.9, 150.3 (aromatic carbons), 162.6 (HC=NH), 171.4 (CO–O), 180.5 (N–CO–N) ppm; HRMS: *m*/*z* Calcd. for C₂₇H₂₀N₃O₄ (M + H)⁺ 450.1454; Found 450.1450.

(*E*)-*N*-(2-Chlorobenzylidene)-3-(1-oxo-1H-isochromen-3-yl)-5-phenyl-1H-pyrazole-1-carboxamide (**9**l): Light yellow solid; yield 68%; mp 214-216°C; ¹H NMR (400 MHz, CDCl₃ + DMSO-d₆): δ 6.76-7.84 (m, 15H, Ar–H), 8.93 (s, 1H, HC=NCO) ppm; ¹³C NMR (100 MHz, DMSOd₆): δ 109.8, 113.0, 117.4, 120.3, 123.2, 123.9, 125.8, 126.9, 127.5, 128.3, 129.1, 130.4, 131.5, 132.3, 134.2, 135.1, 141.6, 144.0, 146.2, 149.2, 150.7 (aromatic carbons), 161.0 (HC=NH), 171.5 (CO–O), 182.3 (N–CO–N) ppm; HRMS: *m/z* Calcd. for C₂₆H₁₇ClN₃O₃ (M + H)⁺ 454.0958; Found 454.0955.

2.1.4 | Biological experiment

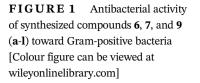

Antimicrobial activity

Four bacteria namely *Proteus vulgaris* (ATCC-29213), *Escherichia coli* (ATCC-8739), *Staphylococcus aureus* (ATCC-19433), and *Bacillus subtilis* (ATCC-6633) were used to screen the antibacterial nature of the synthesized compounds. For antifungal tests, two fungi namely *Aspergillus flavus* (MTCC-1884) and *Aspergillus niger* (MTCC-1881) were utilized. Chloramphenicol and Ketoconazole were used as reference drugs for antibacterial and antifungal tests, respectively. According to the methodology cited there in,^[46] two different test concentrations 50 and 100 µg/well were used.

3 | RESULTS AND DISCUSSION

3.1 | Chemistry

The preparation method that deliver to the production of the titled compounds **6**, **7**, and **9(a-1)** were figured out in Scheme 1. By implementing the standard literature, reaction of formyl benzoic acid (**1**) with mono-chloroacetone (**2**) formed the product 3-acetyl-1*H*-isochromen-1-one (**3**).


SCHEME 1 Synthesis of tri-substituted pyrazole derivatives

	Test concentration (μg/well)	Inhibition zone (mm)				
Test compounds number		Gram-negative bacteria		Gram-positive bacteria		
		Proteus vulgaris (ATCC-29213)	Escherichia coli (ATCC-8739)	Staphylococcus aureus (ATCC-19433)	Bacillus subtilis (ATCC-6633)	
6	50	03	06	05	07	
	100	05	07	07	08	
7	50	05	07	08	09	
	100	07	08	10	12	
9a	50	10	15	13	16	
	100	12	21	16	19	
9b	50	25	30	27	31	
	100	30	37	34	36	
9c	50	07	11	09	10	
	100	09	16	13	15	
9d	50	0	0	0	0	
	100	0	0	0	0	
9e	50	22	29	25	28	
	100	26	34	31	32	
9f	50	26	31	29	35	
	100	32	39	35	43	
9g	50	08	12	11	13	
	100	10	20	14	18	
9h	50	0	0	0	0	
	100	0	0	0	0	
9i	50	13	18	14	18	
	100	16	24	19	21	
9j	50	19	23	19	22	
-1	100	21	31	25	26	
9k	50	15	21	16	20	
	100	19	27	20	24	
91	50	20	26	22	25	
	100	25	33	28	30	
Chloramphenicol	50	30	35	32	41	
1	100	36	40	38	43	
Control (DMSO)		_	_	_	_	

TABLE 1 Compounds 6, 7 and 9(a-l) in vitro antibacterial results

Reaction between compound **3** and benzaldehyde in presence of base such as sodium hydroxide got intermediate product **5**. $3-(1-\infty - 1H-isochromen-3-yl)-5-phenyl-4,-$ 5-dihydro-1H-pyrazole-1-carboxamide (**6**) wassynthesized by using 3-cinnamoyl-1H-isochromen-1-one(**5**) intermediate and hydrazine carboxamide in methanolsolvent media which contained sodium hydroxide base.The proton NMR spectra of compound**6**indicated anAMX intense pattern for the hydrogens of pyrazoline

structure. There were three double doublet signals displayed at δ 3.20, 3.86 and 5.36 ppm were recognized to H_A , H_M , and H_X . Dehydrogenation of compound **6** with chloranil in the presence of xylene as a solvent gave the outcome of 3-(1-oxo-1H-isochromen-3-yl)-5-phenyl-1H-pyrazole-1-carboxamide (7) as a product. The absence of AMX splitting pattern indicated that formation of the product **7**. Further, condensation reaction was done between compound **7** and substituted aldehydes **8(a-1)** in

45

40

35

30

25

20

15

10 5 n

40

35

30

25

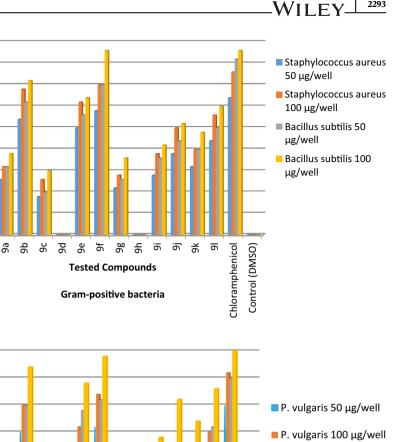
20

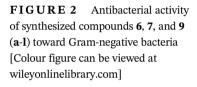
15

10

5 n

ە


9a


qe 9с bd

9e Ъ

Zone of Inhibition (mm)

Zone of Inhibition (mm)

acetic acid media resulted the corresponding final compounds 9(a-1). All the final compounds formed with good yield. In total, 14 new synthetic compounds were characterized by using proton NMR, carbon NMR and HRMS mass spectral data.

3.2 Antimicrobial activity

Antibacterial activity results tabulated in Table 1 exposed that most of the tested compounds displayed excellent to moderate activity except two compounds. The structures 9d and 9h displayed zero activity toward all the Gramnegative bacteria (GNB) and GPB. Between the active substances, compound 9f displayed promising antibacterial

activity towards all the bacteria in two concentrations (Figures 1 and 2). In addition, compared to reference drug Chloramphenicol, this compound showed equal effectiveness toward *B. subtilis* at 100 µg/well concentration (Figure 1). Moreover, compounds 9b, 9e, 9l, and 9j were revealed comparable antibacterial activity, when compared to the reference standard drug. In fact, antibacterial activity of aromatized and non-aromatized compounds was interested that, aromatized compound 7 have better activity than the non-aromatized compound 6. On the other hand, Table 2 exposed the antifungal results of the test compounds 6, 7 and 9(a-l). In those, the dehydrogenated (7) and non-aromatized (6) compounds inactive towards to fungi, the other screened compounds demonstrated admirable to low antifungal activity.

6 6 Chloramphenicol

Control (DMSO)

9 9

98 9h

Tested Compounds

Gram-negative bacteria

2293

■ E. coli 50 µg/well

E. coli 100 μg/well

Test	Test	Inhibition zone (mm)			
compounds number	concentration (μg/well)	Aspergillus flavus (MTCC-1884)	Aspergillus niger (MTCC-1881)		
6	50	0	0		
	100	0	0		
7	50	06	09		
	100	10	13		
9a	50	14	16		
	100	17	21		
9b	50	33	37		
	100	35	40		
9c	50	09	10		
	100	10	15		
9d	50	0	0		
	100	0	0		
9e	50	31	33		
	100	30	35		
9f	50	36	40		
	100	39	44		
9g	50	10	12		
	100	13	18		
9h	50	0	0		
	100	0	0		
9i	50	16	20		
	100	19	25		
9j	50	24	28		
	100	27	30		
9k	50	20	23		
	100	24	27		
91	50	28	31		
	100	29	33		
Ketoconazole	50	38	42		
	100	41	46		
Control (DMSO)		_	_		

REDDY ET AL.

TABLE 2Compounds 6, 7 and 9(a-l) in vitro antifungal results

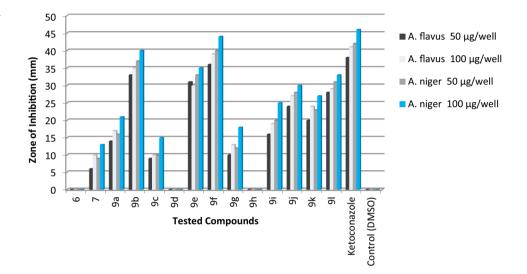
3.3

From the above all biologically active compounds, three compounds were chosen to evaluate their MIC (minimum inhibitory concentration) and minimum bactericidal/fungicidal concentration (MBC/MFC) efficiency toward two fungi and four bacteria. Results in Table 3 revealed that prepared compound **9f** minimum bactericidal concentration is $2 \times$ MIC in case of two GPB, while the same compound MFC is $2 \times$ MIC toward *A. niger* fungi. In addition, MBC value of **9b** is $2 \times$ MIC toward *B. subtilis* only. Meanwhile, the other compound **9e**

MIC, MBC/MFC test results

exhibited MBC/MFC results three or more times higher than their MIC value.

3.4 | Thought-provoking points about the structure activity relationships


Based on the biological activity results, some exciting points were observed accurately. Firstly, in between compounds **6** and **7**, there was a strong variation about their antimicrobial activities. The antibacterial activity of motif **6** is almost negligible and inactive toward fungi. This may be due to the

2294 WILEY-

TABLE 3 Compounds 9f, 9b, and 9e MIC (MBC/MFC) results

	MIC (MBC/MFC)							
Samples	Proteus vulgaris	Escherichia coli	Staphylococcus aureus	Bacillus subtilis	Aspergillus flavus	Aspergillus niger		
9b	100 (>200)	50 (>100)	50 (>100)	25 (50)	50 (>100)	25 (100)		
9e	50 (>100)	50 (200)	25 (200)	25 (>100)	25 (100)	50 (>200)		
9f	50 (>100)	25 (100)	25 (50)	12.5 (25)	50 (>100)	50 (100)		
Ciprofloxacin	12.5	12.5	6.25	6.25	—	—		
Ketoconazole	_	—	_	—	12.5	6.25		

FIGURE 3 Antifungal activity of synthesized compounds **6**, **7**, and **9(a-1)** [Colour figure can be viewed at wileyonlinelibrary.com]

presence non-aromatized pyrazole core. While the composite 7 displayed antibacterial and antifungal nature, because of its aromatized pyrazole structure. The most valid point observed was that compounds 6 and 7 exhibited less antimicrobial activity than amalgams 9(a-1). The strong variation was happened in biological results only due to the presence of the extended conjugation presented in compounds 9(a-l). Later, about the tested compounds 9(a-l) and their activity results delivered some interesting key points. Between the compounds 9(a-l), all active compounds displayed excellent antibacterial activity toward GPB particularly, B. subtilis than GNB. In fact, total active compounds showed higher antifungal activity toward A. niger in two concentrations than other fungi (Figure 3). On the other hand, may be due to the presence of the amino group in the compounds 9d and 9h that have zero antimicrobial activity. Similarly, compound 9f showed higher antimicrobial activity when compared to all other active compounds. This may be due to the presence of a nitro group as an attachment.

4 | CONCLUSION

A series of novel tri-substituted pyrazole derivatives were prepared via reactive intermediates and tested for their antibacterial and antifungal activities. Between two intermediates **6** and **7**, aromatized intermediate compound **7** showed better antimicrobial action than compound **6**. Among the condensation products 9(a-1), expect two, remaining compounds displayed excellent to low antimicrobial assay. Interestingly, all the active compounds strongly effective toward GPB mainly, *B. subtilis*, while the total active compounds delivered higher antifungal action toward *A. niger* fungi than other fungi. The nitrosubstituted compound **9f** exposed higher biological activity. On the other hand, amino attached tri-substituted pyrazole compounds do not show any activity against tested all microbial strains.

ACKNOWLEDGMENTS

The author G.M.R. thanks Russian Science Foundation (reference #18-13-00365), Russia and Ural Federal University, Russia, for laboratory facilities.

ORCID

Guda Mallikarjuna Reddy D https://orcid.org/0000-0002-6275-3484

Jarem Raul Garcia D https://orcid.org/0000-0001-9409-288X

²²⁹⁶ WILEY-

REFERENCES

- K. T. Kavanagh, S. Abusalem, L. E. Calderon, Antimicrob. Resist. Infect. Control 2017, 6, 34.
- [2] A. L. Casey, P. A. Lambert, T. S. J. Elliott, Int. J. Antimicrob. Agents 2007, 29, S23.
- [3] G. A. Noskin, R. J. Rubin, J. J. Schentag, J. Kluytmans, E. C. Hedblom, M. Smulders, E. Lapetina, E. Gemmen, Arch. Intern. Med. 2005, 165, 1756.
- [4] J. O'Neill, R. Minghui, N. Kuo, S. Chaudhry, M. W. Bonney, S. Solomon, J. K. Hamied, M. O. Moraes, E. Goosby, Tackling drug-resistant infections globally: final report and recommendations, 2016, https://amr-review.org/ (accessed: May 2016).
- [5] World Health Organization, Global action plan on antimicrobial resistance, 2015, http://www.who.int/antimicrobialresistance/globalaction-plan/en/ (accessed: May 2015).
- [6] M. Victoria, E. Castelli, M. Butassi, M. Candida, L. A. Svetaz, F. Vicente, S. A. Zacchino, *Expert Opin. Ther. Pat.* 2014, 24, 323.
- [7] G. D. Brown, D. W. Denning, N. A. R. Gow, S. M. Levitz, M. G. Netea, T. C. White, *Sci. Transl. Med.* **2012**, *4*, 1.
- [8] D. W. Denning, W. W. Hope, Trends Microbiol. 2010, 18, 195.
- [9] S. Y. Abbas, M. A. M. Sh El-Sharief, W. M. Basyouni, I. M. I. Fakhr, E. W. El-Gammal, *Eur. J. Med. Chem.* **2013**, *64*, 111.
- [10] M. A. M. Sh El-Sharief, S. Y. Abbas, K. A. M. El-Bayouki, E. W. El-Gammal, *Eur. J. Med. Chem.* 2013, 67, 263.
- [11] Y. A. Ammar, M. A. M. Sh El-Sharief, M. M. Ghorab, Y. A. Mohamed, A. Ragab, S. Y. Abbas, *Cur. Org. Syn.* 2016, 13, 466.
- [12] M. H. Helal, S. Y. Abbas, M. A. Salem, A. A. Farag, Y. A. Ammar, *Med. Chem. Res.* 2013, *22*, 5598.
- [13] S. G. Küçükgüzel, S. Senkardes, Eur. J. Med. Chem. 2015, 97, 786.
- [14] C. B. Vicentini, C. Romagnoli, E. Andreotti, D. Mares, J. Agric. Food Chem. 2007, 55, 10331.
- [15] Y. Li, H. Q. Zhang, J. Liu, X. P. Yang, Z. J. Liu, J. Agric. Food Chem. 2006, 54, 3636.
- [16] B. L. Wang, H. W. Zhu, Y. Ma, L. X. Xiong, Y. Q. Li, Y. Zhao, J. F. Zhang, Y. W. Chen, S. Zhou, Z. M. Li, J. Agric. Food Chem. 2013, 61, 5483.
- [17] G. Ouyang, X. J. Cai, Z. Chen, B. A. Song, P. S. Bhadury, S. Yang, L. H. Jin, W. Xue, D. Y. Hu, S. Zeng, *J. Agric. Food Chem.* **2008**, *56*, 10160.
- [18] H. J. Song, Y. X. Liu, L. X. Xiong, Y. Q. Li, N. Yang, Q. M. Wang, J. Agric. Food Chem. 2013, 61, 8730.
- [19] H. J. Song, Y. X. Liu, L. X. Xiong, Y. Q. Li, N. Yang, Q. M. Wang, J. Agric. Food Chem. 2012, 60, 1470.
- [20] D. A. Karadimos, G. S. Karoglanidis, K. Tzavella-Klonari, Crop Prot. 2005, 24, 23.
- [21] H. Dai, S. Ge, J. Guo, S. Chen, M. Huang, J. Yang, S. Sun, Y. Ling, Y. Shi, *Eur. J. Med. Chem.* 2018, 143, 1066.
- [22] M. Li, B. Zhao, Eur. J. Med. Chem. 2014, 85, 311.
- [23] T. D. Penning, J. J. Talley, S. R. Bertenshaw, J. S. Carter, P. W. Collins, S. Docter, M. J. Graneto, L. F. Lee, J. F. Malecha, J. M. Miyashiro, R. S. Rogers, D. J. Rogier, S. S. Yu, G. D. Anderson, E. G. Burton, J. N. Cogburn, S. A. Gregory, C. M. Koboldt, W. E. Perkins, K. Seibert, A. W. Veenhiuzen, Y. Y. Zhang, P. C. Isakson, J. Med. Chem. 1997, 40, 1347.
- [24] N. K. Terrett, A. S. Bell, D. Brown, P. Ellis, *Bioorg. Med. Chem. Lett.* **1996**, *6*, 1819.
- [25] S. R. Stauffer, C. J. Coletta, R. Tedesco, G. Nishiguchi, K. Carlson, J. Sun, B. S. Katzenellenbogen, J. A. Katzenellenbogen, J. Med. Chem. 2000, 43, 4934.

- [26] A. D. Prasanna, R. J. Sonali, Int. J. Med. Chem. 2015, 1, 670181.
- [27] Z. Sui, J. Guan, M. P. Ferro, K. McCoy, M. P. Wachter, W. V. Murray, M. Singer, M. Steber, D. M. Ritchie, D. C. Argentieri, *Bioorg. Med. Chem. Lett.* **2000**, *10*, 601.
- [28] O. Bruno, F. Bondavalli, A. Ranise, P. Schenone, C. Losasso, L. Cilenti, C. Matera, E. Marmo, *Farmacoterapia* **1990**, *45*, 147.
- [29] D. Secci, A. Bolasco, P. Chimenti, S. Carradori, Curr. Med. Chem. 2011, 18, 5114.
- [30] D. M. Lokeshwari, D. K. Achutha, B. Srinivasan, N. Shivalingegowda, L. N. Krishnappagowda, A. K. Kariyappa, *Bioorg. Med. Chem. Lett.* **2017**, *27*, 3806.
- [31] J. S. Pasin, A. P. Ferreira, A. L. Saraiva, V. Ratzlaff, R. Andrighetto, P. Machado, S. Marchesan, R. A. Zanette, H. G. Bonacorso, N. Zanatta, M. A. Maritins, J. Ferreira, C. F. Mello, *Braz, J. Med. Biol. Res.* **2010**, *43*, 1193.
- [32] R. Katoch-Rouse, O. A. Pavlova, T. Caulder, A. F. Hoffmann, A. G. Mukhin, A. G. Horti, J. Med. Chem. 2003, 46, 642.
- [33] M. J. Ahsan, Arab J. Chem. 2017, 10, S2762.
- [34] L. D. Mahadevaswamy, A. K. Kariyappa, Pharm. Chem. J. 2017, 51, 670.
- [35] M. Zora, D. Demirci, A. Kivrak, Y. Kelgokmen, *Tetrahedron Lett.* 2016, 57, 993.
- [36] N. G. Shabalala, R. Pagadala, S. B. Jonnalagadda, Ultrason. Sonochem. 2015, 27, 423.
- [37] G. Zhang, H. Ni, W. Chen, J. Shao, H. Liu, B. Chen, Y. Yu, Org. Lett. 2013, 15, 5967.
- [38] H. Liu, Z. L. Ren, W. Wang, J. X. Gong, M. J. Chu, Q. W. Ma, J. C. Wang, X. H. Lv, *Eur. J. Med. Chem.* 2018, 157, 81.
- [39] G. Bertuzzi, E. Locatelli, D. Colecchia, P. Calandro, B. F. Bonini, J. Z. Chandanshive, A. Mazzanti, P. Zani, M. Chiariello, M. C. Franchini, *Eur. J. Med. Chem.* 2016, 117, 1.
- [40] G. M. Reddy, G. Sravya, G. Yuvaraja, A. Camilo Jr.,
 G. V. Zyryanov, J. R. Garcia, *Res. Chem. Int.* 2018, 44, 7491.
- [41] G. M. Reddy, J. R. Garcia, G. V. Zyryanov, G. Sravya, N. B. Reddy, *Bioorg. Chem.* 2019, 82, 324.
- [42] G. M. Reddy, J. R. Garcia, V. H. Reddy, A. K. Kumari, G. V. Zyryanov, G. Yuvaraja, J. Saudi Chem. Soc. 2019, 23, 263.
- [43] G. M. Reddy, J. R. Garcia, J. Heterocyclic Chem. 2017, 54, 89.
- [44] M. Koca, A. S. Ertürk, A. Umaz, Arab J. Chem. 2018, 11, 538.
- [45] P. Aragade, M. Palkar, P. Ronad, D. Satyanarayana, Med. Chem. Res. 2013, 22, 2279.
- [46] G. M. Reddy, J. R. Garcia, V. H. Reddy, A. M. de Andrade, A. Camilo Jr., R. A. Ribeiro, S. R. deLazaro, *Eur. J. Med. Chem.* 2016, 123, 508.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Reddy GM, Garcia JR, Yuvaraja G, Venkata Subbaiah M, Wen J-C. Design, synthesis of tri-substituted pyrazole derivatives as promising antimicrobial agents and investigation of structure activity relationships. *J Heterocyclic Chem*. 2020;57:2288–2296. <u>https://</u> doi.org/10.1002/jhet.3952