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A B S T R A C T

A displacement back analysis algorithm is developed, considering the time-dependent effect of the rock mass. It
can map spatially distributed the first elastic modulus (E1), viscidity coefficient (η1), and the second elastic
modulus (E2) of the Kelvin-Voigt viscoelastic constitutive model (VCM) and the Poynting-Thomson VCM in a
rock mass by fusion of the observed displacement data from the excavation of an unlined rock cavern. The
algorithm is tested and validated using numerical experiments with a synthetic heterogeneous rock mass. The
results of the experiments show that this approach yields unbiased estimates of E1, η1, and E2 fields and
quantifies their uncertainty. Further, the estimated fields closely predict shear strain distribution and dis-
placements field in the example.

1. Introduction

The time-dependent behavior of the rock mass is particularly im-
portant in unlined rock caverns (URCs) excavated in soft rock, heavily
sheared weak rock masses, or rock masses with high in-situ stress (Guan
et al., 2008). After URC excavation in such rock masses, the ground
could gradually deform, leading to the closure of URCs, reduction of the
URCs cross-section (Pellet et al., 2009), or reinforcement of the cavern
during its service life (Guan et al., 2008). As a result, the time-depen-
dent behaviors of rock mass must be considered in the design and
maintenance of URCs in the weak and soft rock mass.

In order to understand and forecast the time-dependent deformation
in URCs, the knowledge of the viscoelastic behavior of the geologic
medium (i.e., constitutive model and its parameters, such as viscidity
coefficient and elastic modulus) is necessary. However, laboratory tests
or large-scale field mechanical tests for investigating the behavior are
seldom conducted (Jiang et al., 2013; Yang et al., 2008; Zhang et al.,
2008) due to cost and time. In addition, these properties vary spatially,
and their spatial distributions (heterogeneity) are difficult to char-
acterize fully. For these reasons, approaches such as inverse modeling

or back analysis have been developed. They take advantage of mea-
sured displacements and/or stresses of the geological formations during
the construction stage of URCs to estimate the parameters.

Over the past decades, various displacement back analysis methods
have been developed. They were built on the homogeneous or zonation
parameter field assumption without considering detailed spatial varia-
bility of the parameters and the uncertainty associated with the esti-
mate. For example, Yang et al. (2001) presented finite element equa-
tions for back-analysis based on four rheological models. Ghorbani and
Sharifzadeh (2009) applied the univariate optimization algorithm to
identify the properties of the Burger-creep visco-plastic (CVISC) model
and the initial stress ratio. Similarly, FENG et al. (2006) proposed a
hybrid genetic identification method with an improved particle swarm
optimization (PSO) algorithm to simultaneously identify the viscoe-
lastic rock material model structure and their parameters. Using mea-
surements of relative displacements of pillar walls, Nazarova and
Nazarov (2005) developed a method to estimate rheological properties
of rocks and then analyzed the stability of the pillar. Recently, a discrete
element method was developed by Nadimi et al. (2011) for back ana-
lysis of the time-dependent behavior of the Siah Bisheh cavern due to
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the presence of fractures and joints.
More recently, geostatistical methods (i.e., kriging or co-kriging),

which use measured parameters and their spatial structures (vario-
grams or covariances), have been applied by Liu et al., 2016; Chen
et al., 2016; Pinheiro et al., 2016; Eivazy et al., 2017; Mayer and Stead,
2017) to estimate spatially distributed mechanical parameter fields
using available point samples of parameters. Generally, the geostatis-
tical methods require a large number of spatial samples to derive reli-
able spatial distribution of the parameter fields. This large number of
samples may not be possible in the preliminary design stage of under-
ground projects. Moreover, in-situ rock properties may change due to
blasting and stress relaxation during the excavation process. Because of
these reasons, combining the displacements data during excavation and
the geostatistical theory as the back analysis is highly desirable. Re-
cently, Gao et al. (2018a), Gao et al. (2018b) developed a geostatistical
back analysis to map spatially distributed deformability and/or shear
strength in a rock mass by fusion of the observed displacement data
from the excavation of a URC. However, these studies assumed the
linear-elastic or the elastic-perfectly plastic law in their approaches,
which is inappropriate for describing the time-dependent behavior of
the rock mass. Therefore, a need for a geostatistical back analysis,
which considers the time-dependent properties of the rock mass, is
clear.

In this paper, we develop a geostatistic estimation approach
(Successive Linear Estimator, SLE) to exploit the data of displacement
induced by excavations for the back analysis, considering the time-de-
pendent behavior of rock mass. The SLE has been widely used in
mapping hydraulic properties in the subsurface, known as hydraulic
tomography, HT, (Yeh and Liu, 2000; Zhu and Yeh, 2005) but has not
been used in the displacement back analysis of viscoelastic properties of
the rock mass.

In the following sections, we discuss the viscoelastic mechanical
model first, and then, a synthetic, two-dimensional numerical model for
a URC with spatially varying viscoelastic parameters are created as our
reference fields. The importance of the effect of heterogeneity of rock
mass on deformability and stability of the URC is then demonstrated.
Subsequently, we introduce our stochastic back analysis approach. We
afterward present the results of parameter estimation and their asso-
ciated uncertainty. Finally, the estimated parameter fields and asso-
ciated uncertainty are combined to predict displacements and their
uncertainty, using the first-order approximation method.

2. Mechanical model

2.1. Viscoelastic numerical model

In this study, the Kelvin-Voigt (KV) constitutive model and the
Poynting-Thomson (PT) constitutive model are selected to describe the
time-dependent deformation of the rock mass, respectively. The con-
cepts of these models are illustrated in Fig. 1a and 1b, in which σc is
applied stress, η1 is the viscidity coefficient, and E1 and E2 are elastic
moduli in these models.

Based on these two models, a two-dimensional finite element model
is built for simulating the spatiotemporal evolution of stress and strain
in a heterogeneous rock mass after the excavation of an unlined rock
cavern. This finite element model considers both instantaneous elastic
deformation and viscous deformation; the total strain of each element,
ε{ }, thus contains two parts:

= +ε ε ε{ } { } { }e v (1)

where ε{ }e is the instantaneous elastic strain vector; ε{ }v is the viscous
strain vector. The stress vector of each element, σ{ }, can be represented
as:

= −σ D ε ε{ } [ ]({ } { })v (2)

where [D] contains the instantaneous elastic modulus (Ee) and Poisson’s

ratio (υ). For the KV model, =E Ee 2; for the PT model, = +E E Ee 1 2

(Yang et al., 2001). If the external force (e.g., excavation force) is f{ }ex ,
the stress equilibrium equation becomes:

∬=f B σ dxdz{ } [ ] { }ex
T

(3)

where B[ ] is the geometry matrix relating strains and nodal displace-
ments; the superscript T denotes the transpose symbol; x represents the
horizontal direction and is positive from the left to the right direction,
and z represents the vertical direction and is positive upward.

Substituting Eq. (2) into Eq. (3), the stress equilibrium equation can
be represented in a matrix form:

= +K u f f[ ]·{ } { } { }m ex v (4)

where K[ ]m is the element stiffness matrix, i.e.,
∬=K B D B dxdz[ ] [ ] [ ][ ]m

T ; u{ } is the nodal displacement components;
f{ }v is the node force induced by the viscous strain. That is,

∬=f B D ε dxdz{ } [ ] [ ]{ }v
T

v (5)

To solve Eq. (4), the forces on the right-hand side of the equation
have to be specified. They are determined as follows. Suppose we de-
note the elements to be excavated as Ω, and the initial geostress of these
elements before excavation is =σ σ σ{ } [ , , 0]hor ver

T
Ω (among them, σhor is

the initial horizontal geostress; σver is the initial vertical geostress).
Then, the forces acting on the cavern boundary after excavation become
the sum of σ{ }Ω and the weight of the elements (Smith et al., 2013). That
is,

∫ ∫= +f B σ dV γ N dV{ } [ ] { } [ ]ex V
T

g V
T

Ω Ω Ω
Ω Ω (6)

where γg is the rock unit weight; VΩ is the excavated volume; [N] is the
element shape functions, corresponding to the typical 4-node quad-
rilateral element in this study. The initial horizontal stresses (σhor) are
calculated by multiplying the vertical stress (σver) with a constant
coefficient of lateral earth pressure (k0), i.e., =σ k σhor ver0 , while the
initial vertical stress (σv) is the weight of the element.

Additionally, in order to calculate the force induced by the viscous
strain f{ }v , the viscous strain has to be determined. Since time-depen-
dent effects are considered, the time-dependent viscous strain is defined
based on the KV model as

⎜ ⎟= + ⎛
⎝

− ⎞
⎠

+△ − △ − △
ε e ε A σ

E
e{ } { } [ ]{ } 1v

t t
E t

η v
t

t E t
η

1

1
1

1
1

(7)

In which the current viscous strain is +△ε{ }v
t t , the previous viscous

strain is ε{ }v
t , and the previous stress state of element is σ{ }t.

On the other hand, the viscous strain of the PT model is described by
the relationship:

Fig. 1. Two viscoelastic constitutive models: (a) Kelvin-Voigt model; (b)
Poynting-Thomson model.
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(8)

In Eqs. (7) and (8), △t is the time interval; A[ ] is a constant matrix
and contains the Poisson’s ratio only. If the plane strain assumption is
adopted, the A[ ] matrix is given as:

=
⎡

⎣

⎢
⎢

− −
− −

−

⎤

⎦

⎥
⎥

A
υ υ

υ υ
υ

[ ]
1 /(1 ) 0

/(1 ) 1 0
0 0 2/(1 ) (9)

Notice that at the initial time (i.e., t = 0), the forces =f{ }v
t 0 are equal

to zero, and afterward, they change according to Eq. (5), and Eq. (7) or
Eq. (8). As the simulation progresses, the viscous strain in Eqs. (7) or (8)
reach a steady-state condition, if

⎜ ⎟

⎜ ⎟

=
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( )
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3

2 2 2
1

2
3
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1

(10)

where Tol is a prescribed convergence tolerance value. The subscript of
the summation, Gauss, represents all gauss points of each element for
numerical integral; the subscript Elements denotes all the element
number of this 2D numerical model; εx , εz, and εxz are the total strain
components. According to Owen and Hinton (1980), such a global
measure for steady-state conditions (Eq. (10)) is superior to the measure
at some selected points.

The above viscoelastic numerical models are applied to a hypothe-
tical geological rock mass (Fig. 2a). The rock mass (domain) is 100 m
high and 100 m wide and is discretized into 866 elements (i.e., the
dimension of the refined grid is 2.5 m × 2.5 m, while the coarse grid is

5 m × 5 m), and 938 nodes. The cavern is 17.5 m in height and 15 m in
width and located in the middle of the domain. The triangle symbols
with or without circle represent mechanical boundary conditions (the
same as Fig. A1 in Appendix A). Specifically, no displacement in the x-
direction condition (i.e., =u 0x ) is assigned to the left-hand side and the
right-hand site boundaries while the displacements of the domain
bottom are set to be zero (i.e., = =u u 0x z .)

Before conducting the 2-D experiment, we verify the 2-D finite
element program with the analytical solution for simulating a com-
pression test (See Appendix A).

2.2. Reference fields

To numerically simulate the effects of heterogeneity and to test the
ability of our back analysis algorithm, a synthetic heterogeneous rock
mass is created (Fig. 2). As mentioned previously, geomechanical
properties of geologic formations vary spatially (see Cai, 2011; Griffiths
et al., 2009; Griffiths et al., 2011; Boyd et al., 2018). Therefore, the first
elastic modulus (E1), the viscidity coefficient (η1), and the second elastic
modulus (E2) of the rock mass are treated as random fields; each field
has its unconditional statistics (Yeh et al., 2015), representing its spatial
variability. Table 1 lists the statistics, which are based on a compre-
hensive survey of published studies (Çanakci and Pala, 2007; Hsu and
Nelson, 2006; Schweiger et al., 2001; Song et al., 2005; Song et al.,
2011). Afterward, a Fast Fourier Transform (FFT) random field gen-
erator (Gutjahr, 1989) then assigns an E1, η1, and E2 value to each
element of the domain (Fig. 2b, 2c, and 2d) to create three hetero-
geneous parameter fields. Each field is generated with a different seed
number such that each is independent of the other. These fields are the
reference (or true) fields in the following analysis. Note that, since a
variable grid is used, a random parameter field is generated based on

Fig. 2. (a) Mesh discretization of the FEM model and boundary conditions; heterogeneous (b) E1, (c) η1, (d) E2 fields of the reference site.
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the 2.5 m × 2.5 m grid for the whole domain, and then the parameter
value of each coarse grid is the average of the parameter values of the
fine grids within each coarse grid.

In the numerical experiments, we make the following assumptions:

1) The excavation does not alter in-situ rock properties. That is, the
parameter field is assumed to be fixed in time and space during the
excavation. This assumption may not be as realistic as it should be.
It is, however, convenient for the following analysis since our
knowledge of the metamorphosis of the parameter is limited.
Moreover, our proposed inversion algorithm is not affected by this
assumption since it relies on the observed displacement data and
prior spatial statistics of the parameter only. In other words, as this
approach is applied to a real-world situation, the estimated field
reflects the metamorphosis of the parameter field due to excavation
accordingly.

2) Poisson’s ratio (υ) and unit weight (γg) are assumed to be constant
since they have a negligible influence on the back analysis (Sakurai,
2017). Besides, because of the difficulty of determining the initial
geostress, a reasonable and uniform value of the coefficient of lat-
eral earth pressure (k0) is assumed. All of these parameters used in
the numerical simulation are listed in Table 2.

3. Effect of heterogeneity

Prior to the back analysis, we conduct forward simulations to in-
vestigate the displacement field and maximum shear strain field in the
homogeneous and heterogeneous viscoelastic parameter fields after
completion of the excavation of a URC. The purpose of this step is to
demonstrate the effects of heterogeneity and their importance. In the
following simulations, deformation and stability of a rock mass are
evaluated using the maximum shear strain (γmax) (Sakurai, 1993;
Sakurai, 2000;Sakurai, 2017):

= −γ ε εmax 1 3 (11)

where ε1 and ε3 are the maximum and minimum principal strain, re-
spectively. It should be noted that we apply only the KV constitutive
model to conduct the forward simulations for explicating the effect of
heterogeneity.

In the case of the homogeneous field, the viscoelastic parameter
values of all elements are assigned a value that is equal to the mean of
the heterogeneous parameter fields (i.e. = × −μ 3.0 10 GPaE

1
1 ,

= × −μ 2.58 10 GPaη
2

1
, and = × −μ 3.0 10 GPaE

1
2 , Table 1), and the other

mechanical parameters, initial geostress condition, and boundary

condition are the same as those for the heterogeneous case.
The displacements (u) at points p1 and p2 (Fig. 2a) for the homo-

geneous and the heterogeneous field are examined to represent the
crown settlements and the sidewall expansion over time, respectively,
as shown in Fig. 3a. Notice that the displacements of p1 and p2 for the
homogeneous case are smaller than that of the heterogeneous case.
Values of the ratio, Eq. (10), at each time step are illustrated as the
dash-dotted lines in Fig. 3a before the convergence tolerance (i.e.,
Tol = 0.2 listed in Table 2) is reached. From the plot, we find that the
deformation of the cavern in the case of heterogeneity takes a longer
time to stabilize.

The spatial distributions of displacements near steady-state (i.e.,
t = 0.4 year) for the heterogeneous and the homogeneous case are
shown in Fig. 3b and 3c, respectively. Overall, the distribution for the
homogeneous case is symmetrical about the URC, while in the hetero-
geneous case, the displacements near the crown (red areas in Fig. 3b)
are much larger than those at other places.

Likewise, the maximum shear strain (γmax) simulated using homo-
geneous E field is symmetrical (see Fig. 3e), while in the heterogeneous
case, γmax clusters at the left crown and the two floor-corners (see
Fig. 3d), and the value is greater than that in the homogeneous case.
These results indicate that neglecting the heterogeneity, one likely
overestimates the stability of the cavern and underestimates the de-
formability, as well as miscalculates the stabilization time. That is,
considering heterogeneity is important, and an effective method to
characterize the spatial variability of these parameters is necessary for a
reliable design and safe construction of URCs.

4. Back analysis method

To predict the deformation of a heterogeneous rock mass, we,
therefore, propose to monitor the displacement using extensometers at
early times after excavation, e.g., the period depicted as the red box in
Fig. 3a. With these data, a back analysis then estimates E1, η1, and E2
spatial distributions, which are used to forecast the displacements and
the maximum shear strain distributions after excavation. The proposed
approach provides a way to evaluate the stability of the cavern at later
times and to design proper engineering mitigation measures if neces-
sary.

A back analysis in this study is developed using a successive linear
estimator (SLE) (Yeh et al., 1995; Yeh et al., 1996), which has been
proven robust in hydraulic tomography analysis in hydrogeology field
(Yeh and Liu, 2000; Liu et al., 2002; Illman et al., 2009; Xiang et al.,
2009; Zhu and Yeh, 2005; Zha et al., 2014 and many others). Below is
the description of the SLE algorithm tailored to our back analysis, and
the procedure of this inverse approach is illustrated in Fig. 4.

Our back analysis first adopts the highly parameterized hetero-
geneous conceptual model (i.e., each element in the model has its
parameter values). As such, we discretize the 2-D domain of the domain
into N elements; each has three mechanical parameters (i.e., E1, η1, and
E2). These parameters are expressed in terms of their natural logarithm
(i.e., Eln 1, ηln 1, and Eln 2) to ensure the inversed parameter values are
always positive.

The SLE considers these mechanical parameters as spatial random

Table 1
Unconditional statistics for each parameter.

Parameters Values

Mean Variance *Cov(%) correlation length, (m)

The first elastic modulus, E1 (10-1GPa) 3.0(1.0) 2.0(0.2) 47.1 = =λ λ 10x z
The viscidity coefficient, η1(10

-2GPa▪year) 2.58(0.8) 2.34(0.3) 59.3 = =λ λ 10x z
The second elastic modulus, E2 (10-1GPa) 3.0(1.0) 2.0(0.2) 47.1 = =λ λ 10x z

* Cov denote the coefficient of variation. () indicates the natural logarithm of each parameter.

Table 2
Constant parameters for the viscoelastic numerical model.

Parameters Values

Unit weight of granite, γg(KN/m
3) 25

Poisson’s ratio, υ 0.3
coefficient of lateral earth pressure (k0) 1.0
The convergence tolerance, Tol 0.2
The time interval, △t(year) 0.0001
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fields, which are expressed as = +E x A a xln ( ) ( )1 , = +η x B b xln ( ) ( )1 ,
and = +E x S s xln ( ) ( )2 . The A, B, and S are the unconditional means
(i.e., = 〈 〉A E xln ( )1 , = 〈 〉B η xln ( )1 , = 〈 〉S E xln ( )2 , the angle bracket
denotes the expected value); a x( ), b x( ), and s x( ) are the unconditional
perturbations with a zero mean (〈 〉 =a x( ) 0, 〈 〉 =b x( ) 0, and 〈 〉 =s x( ) 0).
The word “unconditional” means that no sampled parameter values or
displacement data are used to constraint the means or perturbations. An
exponential spatial covariance function characterizes the relationship
between perturbations of a given parameter in the two-dimensional
domain:

′ = − − ′ + − ′R P P σ x x λ z z λ( , ) exp[ ( ) ( ) ]aa a x z
2 2 2 2 2

(12)

′ = − − ′ + − ′R P P σ x x λ z z λ( , ) exp[ ( ) ( ) ]bb b x z
2 2 2 2 2

(13)

′ = − − ′ + − ′R P P σ x x λ z z λ( , ) exp[ ( ) ( ) ]ss s x z
2 2 2 2 2

(14)

That is, the relationship of the viscoelastic properties at the point
P x z( , ) and the point ′ ′ ′P x z( , ) decreases as the separation distance
between the two points increases. In Eqs. (12), (13), and (14), σa

2, σb
2

and σs
2 denote the variance of Eln 1, ηln 1, and Eln 2, respectively; λx and

λz , are the correlation scales in x and z directions, respectively, and they
are assumed to be the same for the three properties (see Table 1).
Physically, the correlation scale dictates that any pair of viscoelastic
values located within the correlation scales must have similar values to
reflect the fact that they are in the same geologic unit. It, therefore,

Fig. 3. (a) Simulated displacement behaviors at point p1 and p2 for the homogeneous and heterogeneous case; (b) the contour map of the displacement distribution
at t = 0.4 year for the heterogeneous case; and (d) the contour map of the maximum shear strain for the heterogeneous case. For the homogeneous case, the
corresponding plots are (c) and (e). The arrows are the displacement vectors.
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could be regarded as the overall fabric of the geologic medium (i.e.,
average length, thickness, and width of heterogeneity at a field site)
(Yeh et al., 2015).

SLE aims to derive the statistically most likely estimate of the
parameter value (i.e., conditional expectation) for each element, given
(conditioned with) the observed displacement data from extensometers.
Also, the estimated parameter fields could predict the most likely de-
formation behaviors of the rock mass, given the observed displace-
ments.

The SLE starts with some prior knowledge about the mean values of
the unknown Eln 1, ηln 1, and Eln 2 parameter fields, which are re-
presented as parameter vectors, A(N×1), B(N×1), and S(N×1) in the
numerical model, respectively. In addition to the mean value, SLE also
assumes that the unknown parameter fields possess the spatial covar-
iances (Eqs. (12), (13), and (14)), Raa(N × N), Rbb(N × N), and
Rss(N × N) hereafter. These mean and covariance are called uncondi-
tional mean and covariance.

Suppose we install extensometers at np observation locations and
collect displacements at nt different times. The total number of ob-
served displacements, nu, is np × nt, denoted as u*, a nu × 1 data
vector. Then, the estimated parameter vectors, conditioned by the

observations, are Ac, Bc, and Sc (subscript c denotes conditional), which
are iteratively determined using the stochastic linear estimator:

= + −
= + −
= + −

+ ∗

+ ∗

+ ∗

A A ω G A B S
B B ω G A B S
S S ω G A B S

u
u

u

( ( , , )),
( ( , , )),

( ( , , )).

c
r

c
r

a
T

c
r

c
r

c
r

c
r

c
r

b
T

c
r

c
r

c
r

c
r

c
r

s
T

c
r

c
r

c
r

( 1) ( ) ( ) ( ) ( )

( 1) ( ) ( ) ( ) ( )

( 1) ( ) ( ) ( ) ( ) (15)

where r is the iteration index; G(.) is the forward numerical model
(Section 2.1), which simulates displacements at the observation loca-
tions using the parameters at iteration r, i.e., Ac

r( ), Bc
r( ), and Sc

r( ). Note
that when r = 0, =A Ac

(0) , =B Bc
(0) , and =S Sc

(0) (unconditional mean
values). Since the relationship between the parameters and u is non-
linear, the linear estimator (Eq. (15)) is used iteratively to exploit the
information content about AB, and S in the observed data u. In Eq.
(15), the coefficient matrixes, ωa(nu × N), ωb(nu × N), and ωs(nu × N)
are the weights, which assign the contribution of the difference be-
tween the observed and simulated displacements at each observation
location to previously estimated parameter value at each element. The
superscript T denotes the transpose.

The coefficient matrix, ωa, ωb, and ωs, are determined by solving the
following equation:

+ =

+ =

+ =

R θ R ω R

R θ R ω R

R θ R ω R

[ diag( )] ,

[ diag( )] ,

[ diag( )] .
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r r
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r

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) (16)

where Ruu
r( ) is the auto-covariance of observation data. Rua

r( ), Rub
r( ), and Rus

r( )

are the cross-covariance between the parameters and data. The para-
meter θ is a dynamic stability multiplier, and diag(Ruu

r( )) is a stability
matrix, which contains diagonal components of Ruu

r( ). Therefore, the
solution to Eq. (16) requires the knowledge of auto-covariance Ruu

r( ) and
cross-covariance Rua

r( ), Rub
r( ), and Rus

r( ) at each iteration, r. These covar-
iances are calculated using the first-order numerical approximation:
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At iteration r = 0, Raa
(0), Rbb

(0), and Rss
(0) in Eqs. (17) and (18) are the

unconditional covariance of parameters. Jua
r( )(nu × N), Jub

r( )(nu × N), and
Jus

r( )(nu × N) are the sensitivity (Jacobian) matrix of displacement at
each observation location at a given time with respect to the parameter
at each element, and are evaluated using the parameters estimated at
the current iteration. These sensitivity matrices are determined by a
perturbation approach. Specifically, the approach solves the forward
model for u at the observation location and time, based on the para-
meter fields estimated at current iteration (Ac

r( ), Bc
r( ), and Sc

r( )). It then
solves for another u with some perturbed values (i.e., +A AΔc

r
i

( ) ,
+B BΔc

r
i

( ) , and +S SΔc
r

i
( ) , i = 1,2, …, N). Then, a first-order numerical

approximate of the state sensitivity is used:
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(19)

The sensitivity analysis during each iteration is carried out as fol-
lows. The forward model G(.) first simulates the base-line mean dis-
placement fields at nt sampling times with the given mean values of the
three parameters (i.e., corresponding to the step 2 of the flowchart in
Fig. 4). G(.) is then solved for the displacement fields over the sampling
times with a given perturbed parameter value at element i. Since the
effect of the perturbed values of the three parameters at every element,

AΔ i, BΔ i, and SΔ i, must be evaluated, we must solve G(.) 3 N times,

Fig. 4. Flowchart of the proposed back analysis approach.
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where N is the total number of elements in the domain. Afterward,
sensitivities at observed locations for the three parameters at each
element at the observation times are derived from Eq. (19). The above
procedure is repeated for each iteration. During each iteration, the
base-line and perturbed displacement fields are evaluated with newly
estimated conditional mean parameter fields. This perturbation ap-
proach could be computationally expensive if the number of elements,
where parameters are to be determined, is huge. Alternatively, the
sensitivity can be derived using an adjoint approach (see Sykes et al.,
1985; Grégoire et al., 2004).

For r ≥ 1 the covariance function is updated to obtain the condi-
tional covariance of the parameter according to

= −

= −

= −
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+
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R R ω R
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( 1) ( ) ( )

( 1) ( ) ( ) (20)

This update is to reflect the improvement (i.e., reduction of the
uncertainty) on the estimate due to the iterative extraction of hetero-
geneity information from the measured displacement data.

Three convergence criteria to terminate the iteration are considered:
(1) The change in the spatial variance of the estimated parameter field
between current and last iterations is smaller than a specified tolerance,
implying that the SLE cannot improve the estimation any further. (2)
The change of simulated displacements between successive iterations is
smaller than a given tolerance, indicating that the estimates will not
significantly improve the displacements field. (3) The maximum itera-
tion reaches the given number. If one of the three criteria is met, the
iteration ceases, and the estimates are e optimal.

In this application of SLE, Variably Saturated Flow and Transport in
2D (VSAFT2), a finite element numerical model code for simulating
both forward and inverse aquifer problem (available at www.hwr.
arizona.edu/yeh), by Yeh et al. (1993), is modified to accommodate our
mechanical inverse problem. That is, in order to adapt VSAFT2 for our
study, the hydrology forward model is replaced by the viscoelastic
mechanical forward model provided, and the sensitivity calculation
method used in VSAFT2 is also replaced by the perturbation method
(i.e., Eq. (19)).

5. Numerical experiments

In the following numerical experiments, we assume that the de-
formation of the URC with time in the reference field follows the KV
model. Thereby, the observed displacements for the inversion are de-
rived from the forward simulation based on the KV model with the
corresponding heterogeneous parameters in Fig. 2b, 2c, and 2d. After
completing the excavation, the simulated nodal displacements at the 20
observation locations (see black dots in Fig. 2a) and at the time 0.01,
0.03, 0.05, and 0.07 years (within the red box shown in Fig. 3a) are
collected, i.e., the total number of observed displacement data is 80.

As mentioned previously, the KV model and the PT model have been
proposed for the viscous strain and stress relationship for simulating the
time-dependent behaviors of the rock mass. We, therefore, investigate
two cases: Case 1, a consistent viscoelastic constitutive model (KV) is
used for the forward simulation as well as back analysis. Case 2, the PT
model is used in the inversion of the responses derived from the KV
model.

5.1. Case 1. (Consistent VCM)

With the sparsely sampled displacements, E1, η1, and E2 fields are
simultaneously estimated using SLE, and the estimates are displayed in
Fig. 5a, 5b, and 5c, respectively. The estimated fields near the dis-
placement sampling locations resemble the true parameter fields
(Fig. 2b, 2c, and 2d), while the estimated fields in the coarse region
(away from the sampling locations) are much smoother than the

reference fields. Notice that an abnormal area appears below the cavern
floor (red dashed box in Fig. 5a and 5c), i.e., the estimated E1 and E2
fields of this area is larger than the reference field. The result is likely
owing to the insufficient data near this region for the inverse analysis.

Comparing the estimated η1 and E2 fields, we notice that the re-
solution of the estimated E1 field (Fig. 5a) is low. The physical meaning
of the KV model explains this low-resolution result. Since the spring
represented by E1 is connected parallel to the dashpot represented by
η1(see Fig. 1a), a small movement of the dashpot in a short time after
loads are applied, leads to that the E1 spring does not fully use its elastic
property and play a role in the deformation. Besides, our displacement
sampling is taken at early times after excavation. For this reason, the
estimated E1 field is identifiable only at low-resolution by the dis-
placement response.

To compare the estimation errors, we plot the histograms of the true
and estimated fields of the three parameters in Fig. 5d, 5e, and 5f, along
with their spatial mean and variance, which are defined as

∑ ∑=
⎛
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⎜

⎞

⎠
⎟ =
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⎣
⎢ −

⎤

⎦
⎥

= =

μ Z N Var Z μ Nand ( )
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N

j
j

N

j
1 1

2

(21)

where Zj stands for the true or estimated Eln 1, ηln 1, and Eln 2, respec-
tively; j indicates the element number, and N is the total number of
elements. From these histograms, we observe that the true and estimate
parameters are normally distributed, and the spatial mean of the esti-
mated Eln 1, ηln 1, and Eln 2 are almost equal to the reference fields,
indicating estimates distributions are statistically unbiased in compar-
ison with the reference. The spatial variance of the estimated Eln 1 is
smaller than that of ηln 1, and Eln 2. Thus, it agrees with the low re-
solution of the estimated E1 field as mentioned before.

Contour plots of the conditional variances (the diagonal term of
+Raa

r( 1), +Rbb
r( 1), and +Rss

r( 1) at the final iteration step), which represent the
uncertainty of the estimate at each location, for the estimated Eln 1,

ηln 1, and Eln 2 fields are displayed in Fig. 5g, 5 h, and 5i, respectively.
The conditional variances of these fields near the observation positions
are small, while they are relatively large far away from the observation
ports, especially near the boundary. More importantly, the uncertainty
around the cavern is the smallest, indicative of high confidence in the
estimates around the cavern, which is critical in assessing the deform-
ability and stability of the surrounding rock masses.

5.2. Case 2 (inconsistent VCM)

The estimated results based on the PT model and the observed
displacements from the forward simulation based on KV model are
shown in Fig. 6. A glance of the estimated E1, η1, and E2 fields (see
Fig. 6a, 6b, and 6c) reveals that the estimated fields are relatively
smaller than the reference fields (Fig. 2b, 2c, and 2d). According to
Fig. 6d, 6e, and 6f, estimates, and true parameter histograms are nor-
mally distributed, and, to some extent, the centers of the histograms of
estimated parameters are smaller than those the true field, especially
for η1 and E2 fields. This finding indicates that estimates distributions
are biased. As mentioned in the previous section, at the beginning
period after the excavation completion, the displacements of the cavern
with the KV model are dominated by the instantaneous elastic de-
formation (i.e., σ Ec

KV
2 in Fig. 1a). While the displacement of the cavern

with the PT model at the early times is mainly determined by
+σ E E( )c

PT
1 2 (Fig. 1b). Because of this reason, to make the simulated

displacements agree with the observed, SLE adjusts E1 and E2 values to
smaller values when the PT model is used in the back analysis.

Besides, based on the physical meaning of η1 (i.e., a measure of the
viscidity of fluid material), the smaller η1 value of a material is, the
faster deformation reaches the steady-state. As illustrated in Fig. A2 of
Appendix A, the displacement with KV model is significantly faster than
that of PT model to reach a steady state. Thus, the η1 value in the PT
model has to be smaller in order to obtain a similar rate of deformation.
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The uncertainty of the estimated E1, η1, and E2 fields are displayed
in Fig. 6g, 6h, and 6i, respectively. These uncertainties (i.e., conditional
variances) near the observation positions are small, while they are re-
latively large far away from the observation locations, especially near
the upper boundary.

The scatterplots of the simulated displacements versus the observed
at different times for these two cases are prepared in Fig. 7a and 7b,
respectively. A linear model is fitted to the scatter data without forcing
the intercept to zero. The simulated displacements from the final esti-
mated parameters field and the observed are in good agreement (the
blue dots in these figures). Since there are no measurement errors or
noises, the slope and R2 are nearly equal to unity in both of two cases at
the final iteration, and the magnitudes of L1 and L2 are small: 10-4 (m)
and 10-7 (m2) for the case of using consistent VCM, 10-3 (m) and 10-6

(m2) for the case of using inconsistent VCM, respectively. These plots
show that our calibration efforts are adequate, even using inconsistent
VCM. More importantly, Figs. 5–7 demonstrate that matching the si-
mulated and observed displacements satisfactorily does not guarantee
the accurate estimates of parameter fields.

6. Assessment of inversion results

6.1. Validation

The final goal of any site characterization is to provide an accurate
prediction of displacements or stability at critical locations of a URC.
For this reason, a rationale means for validating these estimates is to
simulate displacements at various locations, where no data are used in
the inversion, and to check the accuracy of the predicted displacements.

We thereby utilize the estimated parameters obtained from the SLE
with consistent VCM (Fig. 5a, 5b, and 5c) and with the inconsistent
VCM (Fig. 6a, 6b, 6c) to simulate displacements of the cavern periphery
at the different times (t = 0.01, t = 0.1, and t = 0.4 years).

Predicted displacements at 19 locations along the periphery are
displayed from an A-B-C-D clock-wise order, as illustrated in Fig. 8. In
general, both of the estimates using the consistent and the inconsistent
VCM predict a similar pattern of the displacements as the true dis-
placements. At the early and the intermediate times (i.e., t = 0.01 and
t = 0.1 year, respectively), the parameter fields estimated with con-
sistent VCM result in better predictions of the displacements than using
the parameter fields estimated with inconsistent VCM. Nevertheless, at
the latter time (i.e., t = 0.4 year), the displacements using the estimates
with the consistent VCM are under-predicted the true displacements.
This underestimation is likely because only displacements observations
at early times and sparse locations are used for inversion.

Generally, the maximum shear strain (γmax) reflects the stability
state of the cavern and is an appropriate indicator for the potentially
unstable zone of the surrounding rock masses. For this reason, γmax
distributions at late times based on the estimates using the consistent
and the inconsistent VCM are illustrated in Fig. 9a and b, respectively.
They show that γmax distributions based on both estimates yield high-
value zones at the left crown and the two corners of the floor of the
cavern consistent with the true γmax distribution (see Fig. 3d). The
scatter plots showing predicted maximum shear strains vs. the true ones
over the entire domain are presented in Fig. 9c and 9d. The red circles
are the predicted and the true shear strain pairs within the red rectangle
in Fig. 9a and 9b, which is the region of our concern. While the pre-
dicted γmax values are not exact but unbiased, even though the estimated

Fig. 5. Back analysis results with the consistent viscoelastic constitutive model (VCM): estimated (a) E1, (b) η1, (c) E2 field; the histogram of estimated versus true
fields for (d) Eln 1, (e) ηln 1, (f) Eln 2; the associated conditional variances of (g) Eln 1, (h) ηln 1, (i) Eln 2. μtr and Vartr represent the spatial mean and spatial variance of
the true fields, respectively, and the μes and Vares represent that of estimated fields.
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parameter fields with inconsistent VCM are biased, as mentioned in
Section 5.2. However, the predicted values from the inconsistent VCM
scatter slightly larger than those with consistent VCM. The result is
exciting: using the estimated parameter field derived from SLE, one can
derive an excellent prediction of the displacements and unstable-zone
behavior so long some displacement and prior geostatistics information
are available.

6.2. Uncertainty of prediction

Due to our limited ability to fully characterize the spatial variability

of the parameters, our estimated parameters and predicted responses
are subjected to uncertainty. To evaluate the uncertainty, the predicted
vertical displacement at point p1 (uy) and the horizontal displacement
(ux) at point p2 with upper-bound and lower-bounds, which denote the
predicted displacement plus/minus the standard deviations of the dis-
placements (σux and σuy).

As discussed previously, the SLE aims to derive the conditional
mean fields, which could predict the most likely (i.e., minimum un-
certain) spatiotemporal evolution of the displacement, with given ob-
served datasets. To reinforce this point, we compare the predicted
evolution of the displacements and their uncertainty based on the

Fig. 6. Back analysis results with the inconsistent viscoelastic constitutive model (VCM): estimated (a) E1, (b) η1, (c) E2 field; the histogram of estimated versus true
fields for (d) Eln 1, (e) ηln 1, (f) Eln 2; the associated conditional variances of (g) Eln 1, (h) ηln 1, (i) Eln 2. μtr and Vartr represent the spatial mean and spatial variance of
the true fields, respectively, and the μes and Vares represent that of estimated fields.
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Fig. 7. The scatterplots of simulated versus observed displacements at the final iterations for (a) SLE with consistent VCM, (b) SLE with inconsistent VCM, illustrating
calibration results.
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conditionally estimated parameter fields and unconditional (homo-
geneous) parameter fields. The unconditional and conditional standard
deviations (uncertainty), σux and σuy, are determined by a first-order
approximation to avoid tedious Monte Carlo simulations:

= + +

= + +

R R R R

R R R R

J J J J J J

J J J J J J
u u u a aa u a u b bb u b u s ss u s

u u u a aa u a u b bb u b u s ss u s

T T T

T T T
x x x x x x x x

y y y y y y y y (22)

where the diagonal term of Ru ux x(Nt × Nt) and Ru uy y (Nt × Nt) are the
variance of ux at point p2 and that of uy at point p1. Taking the square
root of the diagonal term produces the σux and σuy at every time steps
(Nt) of the entire period after excavation. J (Nt × N) is the sensitivity
(Jacobian) matrix of displacement with respect to each element. N is
the total number of elements in our finite element model. For un-
conditional cases, Raa, Rbb, and Rss are the unconditional parameter

covariances, and J is evaluated at the unconditional mean parameters.
Meanwhile, for the conditional cases, Raa, Rbb, and Rss are the condi-
tional covariances from Eq. (20) at the last iteration, and J is evaluated
at the conditional mean parameters.

Fig. 10 shows the predictions based on the unconditional approach
(the solid blue line) and the conditional approach (the solid green line
and the solid pink line). The conditional upper/lower bounds of pre-
dicted displacements at p1 and p2 points are much smaller than those of
the unconditional case. That is, the conditional approaches give us high
confidence for the assessment of displacement evolution of the cavern.
Thus, if the mean parameter values are used only in the displacement
prediction, the predicted displacement has high uncertainty. In con-
trast, a fusion of displacement measurements in the back analysis

Fig. 8. Validation results of the predicted displacements of the cavern per-
iphery at different times based on the SLE estimated parameter fields.

Fig. 9. Validation results of the contour map of maximum shear strain for (a) SLE with consistent VCM, (b) SLE with inconsistent VCM; (c) and (d) the scatter plots
showing predicted maximum shear strain vs. the true over the entire domain. The red circles are the comparison of the predicted maximum shear strain and the true
within the red rectangle in (a) and (b). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Comparison of displacements and its uncertainty at point p1 and p2
predicted based on SLE estimated field with consistent VCM and inconsistent
VCM.
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decreases the uncertainty and leads to a realistic assessment of the
deformation of the cavern.

7. Conclusions

We develop a stochastic successive linear estimator (SLE) algorithm
for simultaneously estimating the spatially varying viscoelastic para-
meter fields (i.e., viscidity coefficient and two different elastic moduli)
after the excavation of an unlined rock carven (URC) in a hetero-
geneous rock mass. Based on synthetic cases, we show that the inver-
sion algorithm is a promising and viable tool for mapping detailed
spatial variation of the viscoelastic parameters, using only a limited
number of extensometer data after completion of the cavern. We also
demonstrate that the resolutions of the first elastic modulus (E1) of the
KV model is lower than the viscidity coefficient (η1) and the other
elastic modulus (E2), due to the use of observed displacements sampling
at the early period. Even so, they are sufficient to yield satisfactory
predictions of the displacements and high maximum shear strain zone
around the cavern.

In addition, if an inconsistent viscoelastic constitutive model is used
for the SLE inversion, the estimated mechanical model parameters also
could be adequately calibrated and could satisfactorily predict de-
formation and unstable-zone of a cavern. Overall, the SLE algorithm is a
robust and useful tool.

More importantly, the SLE analysis provides the uncertainty esti-
mate associated with the estimated parameter fields under available
information. This uncertainty could serve as a guide for possible en-
gineering reinforcement.

While we believe that these results are exciting, we acknowledge
that they are based on numerical experiments, in which data noise and
excavation disturbances are excluded. Therefore, the approach needs
more applications to field problems. Moreover, only two different vis-
coelastic constitutive models are assumed, and three parameters are
identified in this back analysis. To fully evaluate the time-dependent
features of the plastic zone during the construction of URC, an elastic-

viscoplastic constitutive model should be adopted, and a back analysis
for determining the material strength parameters (e.g., the cohesion
and the internal friction angle) should be developed.
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Appendix A

The example considered here is the viscoelastic deformation of one-dimensional rock column with 10 elements under a constant loading (Fig.
A1). The dimension of each element is 1 m × 1 m and the applied load is 3.2 MPa. The assumed material properties are included in Fig. A1, where it
is noted that the unit weight and Poisson's ratio are taken to be zero. It means that the self-weight of the column is neglected and the 2-D finite
element mechanical numerical code is transformed to simulate the 1-D problem. After given the time interval and the convergence tolerance as
△t = 0.0001 year and Tol= 0.2, respectively, the numerical solutions of the compression displacement (i.e., uy) for the two constitutive models are
illustrated in Fig. A2.

For comparison, the analytical solution of this 1-D problem based on the KV model is (Paraskevopoulou and Diederichs, 2018; Yang et al., 2001)
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Fig. A1. Mesh discretization of the FEM model for one-dimensional problem and boundary conditions and associated parameters used in this problem.
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While the analytical solution of this 1-D problem based on the PT model is
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(A2)

Based on the same time interval, the analytical solutions of uy are also shown in Fig. A2. As expressed in Eqs. (A1) and (A2), at the instantaneous
moment of applying the load (i.e., t = 0), the displacement of the column for KV model and the PT model are equal to σ Ec 2 and +σ E E( )c 1 2 ,
respectively; when the time tends to infinity (i.e., t → ∞), the uy for KV model and the PT model are equal to +σ E E E E( ) ( )c 1 2 1 2 and σ Ec 2,
respectively. From the comparison of the uy curves in Fig. A2, the finite element simulation is seen to be in excellent agreement with the analytical
solutions (or theoretical results) for this problem.
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