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A B S T R A C T   

This paper investigates the effectiveness of different oscillatory hydraulic tomography (OHT) frequencies for 
estimating heterogeneous fields. The analysis first formulates the effects of uncharacterized aquifer responses, T, 
and S fields as the ensemble mean residual flux and residual storage terms in the stochastic unconditional and 
conditional mean equations. These terms persist unless the T, S, or head fields are specified everywhere. We then 
conducted OHT to estimate the T and S fields using Monte Carlo experiments. The experiments show that using 
the heads in response to periodic pumping with different frequencies or multifrequency, the estimates’ perfor
mance metrics vary from one realization to others. The mean performance metrics over many realizations are, 
however, indistinguishable, despite the frequency. We attribute the variation in the performance metrics to the 
lack of parameter or state variable ergodicity. Lastly, we emphasize the importance of dense monitoring net
works and a cost-effective data collection strategy to improve the resolution of characterizing aquifer 
heterogeneity.   

1. Introduction 

Conventionally, transmissivity (T) and storage coefficient (S) are 
estimated using a constant rate pumping or injection test and methods of 
analysis such as Thiem (1906), Theis (1935), or Cooper and Jacob 
(1946). Periodic pumping tests (PPT), hydraulic tests with periodically 
varying pumping rates, have also been proposed to estimate these 
properties. For example, Black and Kipp (1981) developed methods for 
estimating diffusivity based on analytical solutions in terms of the 
pressure attenuation and the phase lag during a sinusoidal point or line 
excitations. They concluded that the methods are not a substitute for 
conventional aquifer testing due to time and equipment costs. Still, they 
are a useful tool to apply in specific applications. 

Butler and McElwee (1990) examined the head’s sensitivity at 
pumping well to different known T values at 6 zones, concentrically 
circling the well (a 1-D radial flow). They stated that variations in the 
pumping rate increase the drawdown’s sensitivities to each layer’s 
property. Without estimating the property, they concluded that the 

estimate’s uncertainty could be reduced. 
Rasmussen et al. (2003) and Renner and Messar (2006) applied the 

PPT to field aquifers. They found that the estimated properties were 
hydraulic properties averaged over different volumes of heterogeneous 
subsurface and consistent with conventional aquifer tests. They 
emphasized that the approach minimizes investigation-derived wastes 
(e.g., contaminated groundwater) and introduces a signal different from 
background perturbations (easy to detect). With small-scale soil column 
experiments, Song and Renner (2008) reported that the pressure anal
ysis yields a relatively constant permeability for the high porosity 
sample at different pressures and oscillation periods. They found slightly 
period dependent permeability for the low porosity samples and the 
stacked sample. The period dependence diminishes with increasing 
period. 

Rabinovich et al. (2013) theoretically investigated heterogeneous 
aquifers’ effective conductivity in unsteady periodic flow by a stochastic 
approach. They concluded that the effective conductivity and the 
ensemble mean head and flux have significant dynamic effects. On the 
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other hand, Guiltinan and Becker (2015) used constant rate pumping 
tests and periodic slug tests to detect wells’ hydraulic connectivity in 
fractured bedrock at a field site. They neglected early time drawdown 
behaviors and analyzed the effective hydraulic diffusivity by fitting the 
late time drawdown to Theis curve based on homogeneous aquifers. 
They suggested that the periodic tests’ estimated field is more sensitive 
to the hydraulic connectivity among well pairs than those from the 
constant-rate pumping test. The value of estimated hydraulic diffusivity 
from the periodic tests approaches that of the constant rate test as the 
oscillation frequency decreases. Similarly, the usefulness of periodic 
pumping has also been investigated by Fischer et al. (2018), Schuite 
et al. (2017), and Lavenue and deMarsily (2001) for the karstic and 
fractured aquifer characterization, by Sun et al. (2015) and Sun et al. 
(2017) for leakage detection, and by Rabinovich et al. (2015) for im
aging unconfined aquifer. 

Ahn and Horne (2010) developed analytical solutions for attenuation 
and phase shift of pressure pulse testing in a 1-D radial-flow through 3 
concentric layers of different permeability (with 10 unknown perme
ability blocks) surrounding the test well. They reported that the atten
uation and phase shift provided an ’indicator characteristic’ to reveal 
reservoir heterogeneity. Likewise, based on numerical experiments, 
Cardiff et al. (2013) reported that including head data from pumping 
with different frequencies can improve the aquifer hydraulic parameter 
estimates, even if the pumping is only conducted in one pumping well. 

On the other hand, hydraulic tomography (HT) with constant 
pumping rates has been proposed as a new aquifer characterization 
method (Yeh and Liu, 2000; Zhu and Yeh, 2005). It has been proven over 
the past two decades as a matured technology for high-resolution 
characterization of saturated and variably saturated porous media (e. 
g., Cardiff and Barrash, 2011; Mao et al., 2013b; Berg and Illman, 2011, 
2015; Zhao and Illman, 2018) and fractured rocks at fields and labora
tories (Illman et al., 2009; Zha et al., 2016). Further, theoretical and 
physical explanations of the robustness of tomographic surveys have 
been provided by Wen et al. (2019), Sun et al. (2013), Huang et al. 
(2011), and Yeh et al. (2014). 

Recently, Zhou et al. (2016) reported that head collected from 
oscillatory hydraulic tomography (OHT) with multifrequency excita
tions provides better estimates than those from single-frequency exci
tations when the number of pumping tests and observation locations is 
limited. On the contrary, results of the Monte Carlo experiment of 
aquifer characterization, using river stage variation with different fre
quencies, by Wang et al. (2019) signify that the estimated T field’s 
ensemble-averaged performance is independent of frequency. They 
implied that previously reported improvements of estimates using 
different frequencies based on one realization of heterogeneity are not 
warranted for all possible realizations. However, the river stage to
mography is not the same as OHT, and Wang et al. (2019) only inves
tigated the effect of different single frequencies and did not evaluate the 
performance of river stage variations of multifrequency. 

This paper aims to explain that neglecting heterogeneity introduces 
the frequency- and scenario-dependence estimated parameters. More 
importantly, this paper demonstrates that excitations of multifrequency 
do not overcome difficulties associated with the under-determined na
ture of the inverse problems and do not necessarily improve the het
erogeneity estimates. Finally, the importance of considering flow 
ergodicity issues for evaluating the robustness of inverse models is 
stressed. 

2. Groundwater flow model 

This study assumes that the following equations describe 2-D plan- 
view groundwater flow induced by periodic pumping at a well during 
OHT in a heterogeneous confined aquifer. 

∇⋅[T(x)⋅∇h(x, t)] = S(x)
∂h(x, t)

∂t
+Q(t)δ(x − xp) (1)  

where h represents the head responses (L), T is transmissivity (L2/T), S is 
storage coefficient (-), x is the vector in × and y directions, δ(⋅) is Dirac 
delta function, xp denotes the coordinate of pumping well, and T rep
resents time (T). The periodic pumping rate with a given amplitude Q0 is 
expressed as 

Q(t) = Q0exp(2πiωt) (2) 

in which ω is the frequency (cycle/T) and i is the imaginary unit. The 
positive pumping rate represents extraction. The piezometric head’s 
initial condition is uniform, and the boundary condition can be pre
scribed head or flux boundaries. Expressing the above equations in the 
frequency domain leads to 

∇⋅[T(x)∇⋅ϕ] = iωS(x)ϕ+Q0 (3)  

where ϕ is the phasor (L), which is a complex variable containing the 
information of head amplitude and phase lag. The boundary condition 
can be prescribed phasor or flux boundaries. 

3. Stochastic analysis of PPT in heterogeneous aquifers 

Investigation of the effects of OHT on the estimated T and S in 
aquifers is most appropriate to formulate the problem in a stochastic 
framework and consider the periodic pumping at a single well first. 
Since T(x) and S(x) are spatially varying, and they are difficult to 
determine at every location of the aquifer, the stochastic analysis con
ceptualizes T and S as random fields, which can be expressed as 

T(x) = T +T
′

(x), and S(x) = S+ S
′

(x) (4)  

where T and S are unconditional means, which are invariant in space 
and ensemble. Note that the overhead bar stands for the expected value. 
T′

(x) The unconditional perturbations at each x are characterized by 
their unconditional covariance functions, which are assumed to be 
exponential. These covariance functions specify the spatial variance (i. 
e., the perturbations’ uncertainty) and the spatial relationship between 
perturbations in the ensemble sense. 

Accordingly, many possible ϕ(x,ω) fields exist in this aquifer in 
response to an oscillatory pumping test with a given Q0 at a frequency ω. 
These fields are thus considered as a random field and can be expressed 
by 

ϕ(x,ω) = ϕ(x,ω)+ϕ
′

(x,ω) (5) 

in which ϕ(x,ω) is the unconditional ensemble mean and ϕ′

(x,ω) is 
the perturbation at x with a frequency ω. 

Substituting Eqs. (4) and (5) into Eq. (3), we have 

∇⋅
[(

T + T ′

(x)
)
∇⋅(ϕ(x,ω) + ϕ

′

(x,ω))
]

= iω
(

S + S′

(x)
)
(ϕ(x,ω) + ϕ

′

(x,ω))+Q0 (6) 

Instead of all possible ϕ(x) fields induced by the pumping with a 
given frequency, we seek the most likely unconditional mean of ϕ(x). 
Thus, we take the expected value of Eq. (6), and we have the following: 

E[T ′

] = E[S
′

] = E[ϕ
′

] = 0 and E[∇⋅(T ′

(x)∇ϕ
′

(x,ω)] = ∇⋅E[T ′

(x)∇ϕ
′

(x,ω)]

(7) 

Note that perturbation expectation is zero, and the dominated 
convergence theorem is limx− >0∇f = ∇f (f is any function). Substituting 
Eqs. (7) into Eq. (6), we have 

∇⋅(T ∇ϕ)+∇⋅(T ′
∇ϕ′

) = iωSϕ+ iωS′ ϕ′

+Q0 (8)  

where again, the overhead bar denotes the expected value (or ensemble 
average). Notice that the (x,ω) for ϕ and (x) for T′ and S′ are dropped 
hereafter. This equation is called the ensemble unconditional mean flow 
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equation. It describes ϕ field (the most likely ϕ field) in responses to an 
oscillatory pumping test with a given frequency. This ensemble-mean 
equation shows that the unconditional T, S and ϕ alone do not satisfy 
the mass balance equation unless two additional terms are included. One 
of the terms, T′

∇ϕ′ or the ensemble unconditional mean residual flux (e. 
g., Neuman and Orr, 1993; Guadagnini and Neuman, 1999), is the un
conditional cross-covariance of variations between ∇ϕ and T. The other 
term (S′ ϕ′ ) is the ensemble unconditional mean residual storage or the 
cross-covariance of variations between S and ϕ. These two terms 
represent the contributions of unknown perturbations (T′ ,S′ , and ϕ′ ) to 
the mean flow equation (Gelhar, 1986). 

3.1. Unconditional and conditional effective approaches 

Next, we examine the impacts of T′
∇ϕ′ and S′ ϕ′ in stochastic 

modeling approaches on the unconditional or conditional estimates of T 
and S fields, which yield the most likely unconditional or conditional ϕ 
field (i.e., ensemble mean field). 

3.1.1. Unconditional approach 
Suppose T(x) and S(x) of the aquifer are entirely unknown, and we 

adopt the equivalent homogeneous media (EHM) model to predict the 
unconditional ensemble mean of ϕ. Then, Eq. (8) can be rewritten as: 

Teff∇
2ϕ = iωSeff ϕ+Q0 (9) 

in which Teff = T+∇⋅(T′
∇ϕ′

)[∇2ϕ]− 1 and Seff = S+S′ϕ′

[ϕ]− 1 are the 
unconditional effective parameters. Here, the effective parameters are 
assumed to be invariant in ensemble and space, while some theoretical 
analyses (e.g., Indelman, 2003) showed that they might vary with radial 
distance near the pumping well and then approach some constant values 
at large radial distances. Tartakovsky and Neuman (1998) investigated 
the effect of temporal nonlocality on one- and three-dimensional mean 
flows in infinite, statistically homogeneous media. Rabinovich et al. 
(2013) found that the unconditional effective T derived from the peri
odic pumping test is frequency-dependent and varying with the variance 
of T. This means that additional term (i.e.,∇⋅(T′

∇ϕ′

)[∇2ϕ]− 1) in the 
effective parameter varies with the frequency of pumping rates. These 
effective parameters yield the most likely averaged ϕ field over all 
possible heterogeneity (the unconditional ϕ field) under the given pe
riodic pumping discharge. The deviation from its unconditional mean 
(ϕ)– the uncertainty and spatial variability of ϕ at any location–is 
quantified by the unconditional variance ϕ. 

The application of the effective parameters to a field condition re
quires the ergodicity assumption. That is, this unconditional mean field 
ϕ in an aquifer should reproduce the general pattern of observed ϕ 
values in the least squared sense but does not honor the observed ϕ value 
at each observation location (see Wu et al., 2005; Yeh et al., 2015a). 

3.1.2. Conditional approach 
The conditional approach adopts the highly parameterized concep

tual model and requires that the conditional T, S, and mean ϕ fields 
reproduce measured T, S, and ϕ values at the sampling locations (Yeh 
et al., 1996). Three possible conditional scenarios are discussed below. 

Scenario a) If T(x) and S(x) at every location are given precisely 
without any uncertainty, Eq. (8) reduces to 

∇⋅(Tc(x)∇ϕc) = iωSc(x)ϕc +Q0 (10) 

The subscript c denotes conditional, and the overhead bar again 
represents the expectation. In this case, the conditional mean fields are 
identical to the given realization (i.e., Tc(x) = T(x) and SC(x) = S(x)). 
Since T and S are fully specified, the exact ϕ is equal to the fully 
conditioned mean head field ϕc and can be solved uniquely with the 
given initial and boundary conditions. Notice that T′

∇ϕ′ and S′ ϕ′ vanish 

in this equation. 
Scenario b) This scenario represents the case where the ϕ value at 

every location is known precisely, but T and S fields are entirely un
known. Under this circumstance, the following conditioned mean flow 
equation depicts the ϕ fields: 

∇
[(

T + T
′
)
∇ϕc

]
= iω

(
S + S

′
)

ϕc +Q0 or  

∇
[
T∇ϕc

]
− iωSϕc +∇

[
T

′

∇ϕc

]
− iωS

′

ϕc = Q0 (11) 

Notice that ϕc is a fully conditioned mean or the true ϕ field with zero 
variance (i.e., uncertainty). T and S are unconditional mean values, 
which are known and constant in space and the ensemble, while T’ and 
S’ are unknown perturbations. In Eq. (11), the first two terms are the 
known net flux at each location resulting from the known T and S, and 
the known ϕc. The second two terms denote the unknown net flux and 
storage perturbations at each location due to the unknown T’ and S’, and 
the known ϕc field. 

Although T′
∇ϕ′ and S′ ϕ′ disappear in Eq. (11), estimation of T’ and 

S’ remains an under-determined inverse problem due to the unknown 
spatial distribution of the flux induced by Q0. That is, many possible T′

and S′ pairs lead to the same head field unless T′ and S′ or the spatial 
distribution of flux along the boundaries are specified (Mao et al., 
2013a; Yeh et al., 2015a, 2015b). Because all the variables associated 
with frequency ω (i.e., the first two terms in Eq. (11), ϕc,ω) and Qo are 
specified, the system of equations to be solved is independent of fre
quency and so are the estimated T’ and S’. 

Scenario c) Suppose ϕ, T, and S are known exactly at some (not all) 
locations in the aquifer. The terms T′

∇ϕ′ and S′ϕ′ in Eq. (8) are zero at 
locations where T and S are specified, and at others are non-zero. The 
residual head variances likewise are zero at locations where heads are 
known, but the residual T and S variances at these head locations are 
non-zero, although they become small (e.g., p.286 in Cheng et al., 2019). 
Therefore, the ensemble mean equation becomes 

∇⋅(Teffc(x)∇ϕc) = iωSeffc(x)ϕc +Q0 (12) 

Teffc(x) and Seffc(x) are the conditional effective parameters, which 
honor the sample values at the sample locations. These parameters 
under the given flow conditions yield the conditional mean head fields 
ϕc that reproduce the observed heads at the observation wells (Yeh et al., 
1996). These effective parameters are the sum of their unconditional 
means (i.e., T and S) and the contributions from the non-zero T′

∇ϕ′ and 
S′ ϕ′ terms after conditioning with sparse measurements of ϕ, T, and S. 
Since the variable ϕ

′ ingrained in these non-zero terms vary with the 
frequency, the conditional effective parameters are frequency 
dependent. 

Because of the frequency-dependent nature of the conditional 
effective parameters, some studies (as discussed in the introduction) 
found that a pumping test with a multifrequency rate could lead to a 
more detailed characterization of the heterogeneity than that with a 
constant rate or single frequency. The expectation nature of the two non- 
zero terms (conditional cross-covariance) in the conditional mean flow 
equation may explain these findings. As we have remarked in Scenarios 
a) and b), these terms become small or vanish only if T’, S’, or ϕ′ are 
specified at some locations. That is, without adding additional obser
vation wells or parameter measurements, manipulating pumping rates 
with different frequencies does not remove these cross-covariance terms 
but changes their patterns (as reflected in the sensitivity maps in Figs. 6 
and 7 of Cardiff et al., 2013). Nevertheless, these terms are still 
ensemble-averaged relationships between many possible T’, S’, and ϕ′

fields. That is, many combinations of these fields can lead to the same 
cross-covariance pattern. During the inverse modeling using data from 
multifrequency pumping rates, these cross-covariance terms remain 
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unresolved, and many possible solutions exist. The previous studies 
claiming improvements in the estimates are likely due to the simple 
heterogeneity pattern considered in their studies (e.g., Ahn and Horne, 
2010), which only have a limited number of possibilities. Consequently, 
adding additional frequency information may lead the estimates to a 
similar but not exact heterogeneous pattern. As the number of the un
knowns becomes large and the pattern becomes complex, the possibility 
of obtaining a close estimate by using a multifrequency would be as 
slight as using single frequency data. 

4. Conditional effective parameter Estimator: SimSLE 

To substantiate our points in section 3.1.2 Scenario c, we use a 
conditional effective parameter estimator to conduct numerical experi
ments in section 5. The SimSLE (Simultaneous Successive Linear Esti
mator, Xiang et al. (2009)) is an extension of SLE (Successive Linear 
Estimator, Yeh et al. (1995, 1996)). They are parameter estimation al
gorithms built upon the stochastic conditional expectation concept 
(Priestley, 1979) and the hydrogeology cokriging concept (Kitanidis and 
Vomvoris, 1983; Dagan, 1985). The algorithm also considers the 
nonlinear relationship between the state variable (e.g., water level) and 
the parameters (Kitanidis, 1995; Yeh et al., 1995). In summary, it is a 
stochastic nonlinear estimator that derives the conditional effective 
parameter fields with given locally measured parameter values and 
observed heads, and yields conditional mean and covariance of head 
fields (as discussed in the section 3.1.2 scenario c and (Gao et al., 2021)). 

Recognizing the non-redundant information collected by tomo
graphic surveys (as elucidated in Wen et al., 2019), Yeh and Liu (2000) 
developed the 3-D steady-state hydraulic tomography and Zhu and Yeh 
(2005) built the 3-D transient hydraulic tomography based on the SLE to 
further estimate the conditional effective parameters. Over the past two 
decades, SimSLE has become a mature inverse model for hydraulic to
mography in heterogeneous porous media as well as fractured rocks. 
Recently, Cheng et al. (2019) proposed a linear cokriging technique for 
oscillatory hydraulic tomography. A detailed description of SimSLE is 
available in many publications. Below is a brief description of the al
gorithm for this study. 

Mathematically, SimSLE is similar to the Kalman filter, developed for 
time-domain stochastic processes. It iteratively determines the condi
tional effective parameter fields (Teff (x) and Seff (x) in section 3.1.2. 
scenario c) using the linear estimator 

f̂
(r+1)

= f̂
(r)
+ ε(r)ff J(r)

fh [J(r)T
fh ε(r)ff J(r)

fh + μθ]
− 1
[h* − h(r)] (13) 

in which f̂
(r)

is an m × 1 vector (m is the total number of elements), 
consisting of perturbations of the conditionally estimated effective lnT 
or lnS, and the superscript r is the iteration index. It represents the es
timate at iteration r minus the unconditional mean lnT or lnS. Notice 
that ln denotes the natural logarithm transformation, which is employed 
to avoid the estimates’ negative values. h(r) (n × 1, n is the total number 
of observations) is the simulated head in the time or frequency domain, 
depending on the time- or frequency domain approach. It is simulated by 

Eq. (12) with the newly estimated parameter fields (i.e., adding ̂f
(r)

to its 
unconditional mean values and transforming back to T(r)

eff (x) and S(r)
eff (x)). 

h* (n × 1) is the observed head. The term, J(r)
fh (m × n), is the sensitivity of 

head at a given location in the aquifer with respect to the change in lnT 
or lnS at any location in the aquifer. The sensitivity matrix is evaluated 
by the adjoint state approach [e.g., Sykes et al., 1985; Sun and Yeh, 
1990] using T(r)

eff (x) and S(r)
eff (x). ε

(r)
ff (m × m) is the covariance of lnT or lnS. 

μ is a dynamic stabilizer and θ = dia(J(r)Tfh ε(r)ff J(r)fh ) + Max[dia(J(r)T
fh ε(r)ff J(r)fh )]. 

Max[⋅] is the maximum value. When r = 0, ̂f
(0)

is zero and ε(0)ff (m × m) is 
the unconditional covariance. After the first linear estimation, the un

conditional covariance becomes the residual covariance of f̂
(r+1)

and is 

updated by 

ε(r+1)
ff = ε(r)ff − ε(r)ff J(r)

fh [J(r)T
fh ε(r)ff J(r)

fh + μθ]
− 1

J(r)T
fh ε(r)ff (14) 

The diagonal term of the residual covariance matrix (i.e., residual 
variance) represents the remaining uncertainty of the estimated effec
tive lnT or lnS at every location after the head information is included. 
Albeit the residual variance is an approximation, a small value indicates 
that the estimated effective lnT or lnS likely is close to the true fields. A 
large value indicates the uncertainty is not resolved. Again, this uncer
tainty is an ensemble statistic and is not equal to the actual difference 
between the true and estimate. 

The iterative update is terminated if the mean squared error of 
simulated and observed heads is smaller than a specified tolerance (e.g., 
10− 7), or the increase of the spatial variance of the estimated parameter 
becomes insignificant between successive iterations. That is, the algo
rithm is unable to extract further heterogeneity information contained in 
the observed heads. 

5. Monte Carlo numerical experiments 

OHT attempts to solve the under-determined inverse problems 
(scenario c with conditioning only on the head), which have many 
possible solutions. Utilizing heads induced by excitations with different 
frequencies for inverse modeling may result in accidentally superior or 
poor estimates. Monte Carlo (MC) experiments, therefore, are necessary 
to verify the OHT’s reliability. 

The simulation domain of the MC experiments is a 2-D horizontal 
confined aquifer consisting of 40 × 40 square elements. Each element is 
30 m × 30 m. The aquifer is bounded by a constant head boundary of 30 
m. The initial head is 30 m everywhere. In this experiment, we solve the 
time-domain governing flow equations (Eqs. (1) and (2)) and use 32- 
time steps to represent a single periodic cycle to ensure the results’ ac
curacy. Two hundred realizations of random fields, with given means of 
T and S (0.01 m2/min and 10− 5), variances of lnT and lnS (2 and 0.5), 
and correlation lengths (λx=λy = 400 m), are generated using a spectral 
method (Gutjahr, 1989; Robin et al., 1993). Nine wells are installed in 
the aquifer (circles in Fig. 1). An OHT using four pumping wells (square 
in Fig. 1) with periodic pumping rates of four periods (ω− 1=15, 20, 50, 
and 100 min/cycle) is used in each realization. That is, each realization 
includes 16 individual pumping tests (4 frequencies times 4 pumping 
wells). 

Afterward, the simulated head responses (32 timesteps of the last 
cycle) at monitoring wells after the flow reaches quasi-steady are uti
lized for the inversion. This analysis is conducted in the time domain. 
The analysis based on the frequency domain is presented in the later 
section. The prior information for SimSLE consists of the same means, 
variances, and correlation lengths as those used to generate the random 
field. We use the same geostatistical parameters as the generated 

x (km)

y
(k

m
)

0 0.2 0.4 0.6 0.8 1 1.20

0.2

0.4

0.6

0.8

1

1.2

Fig. 1. Synthetic aquifer. Circles are the observation wells and the squares 
represent pumping wells. Four boundaries are the constant head. 
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random fields to focus on different pumping frequencies’ effects on the 
estimate. The computation is implemented in a variably saturated flow 
finite element model VSAFT2 (Yeh et al., 1993), available at http://tian. 
hwr.arizona.edu/downloads, to estimate T and S with observed heads 
under different frequencies and multifrequency. We use the coefficient 
of determination (R2) and the mean squared error (L2 norm) as the 
performance metrics to evaluate each realization’s estimates. 

T Estimates. Fig. 2a displays the mean and standard deviation of R2 

and L2 between the reference and estimated T fields resulting from 200 
realizations based on different single frequencies and those of the 
combination of all frequencies. The left-side axis of the plot is for R2 and 
the right-side axis is for L2. 

As displayed in the figure, large standard deviations of R2 for 
different frequencies suggest that the OHT survey’s performance could 
vary significantly from one realization to another. Interestingly, the 
mean and standard deviation of R2 and L2 of the 200 realizations are 
almost identical despite the frequency ω. In the multifrequency case, the 
mean R2 is 0.66, with a standard deviation of 0.11; the mean L2 is 0.030, 
with a standard deviation of 0.016. These values are similar to those 
cases with a single frequency. This result indicates that using multiple 
frequencies in OHT does not improve the estimates averaged over the 
200 realizations. 

S Estimates. Performance metrics of estimated S fields in Fig. 2b 
show that the mean and standard deviation of R2 and L2 are nearly 
identical regardless of the pumping rate frequency. OHT using the 
multifrequency yields 0.57 for the mean R2 with 0.12 for the standard 

deviation. The mean L2 is 2.6 × 10− 5, and the standard deviation is 6.9 
× 10− 6. Again, using the multifrequency in OHT does not improve the S 
estimates. 

A Two-Sided T-Test. To further support our conclusion above, we 
carry out a two-sided t-test with 95% confidence interval to certify if the 
difference in mean values between the multiple and single frequencies is 
significant or not. Table 1 lists the t-values corresponding to the results 
in Fig. 2a and b. If the t value is greater than 1.97 or less than − 1.97, the 
difference is significant. In the table, the values labeled by * indicate the 
difference is significant (i.e., the multifrequency improves the estimate). 
The values without * indicate the difference is not significant (i.e., the 
multifrequency does not improve the estimate). The t-values of L2 and R 
in Table 1 show that T’s estimate from multifrequency data does not 
significantly differ from those from the single frequency. In contrast, the 
estimate of S may slightly differ from those from the single frequency. 

Number of Realizations. A sufficient number of realizations is a 
must to ensure the representativeness of MC experiment’s results. Fig. 3a 
and b show the means and standard deviations of R2 and L2 as a function 
of the number of realizations. They confirm that 200 realizations are 
sufficiently large to support our findings. In other words, the MC results 
certify that in many trials, manipulating pumping frequency does not 
reduce the conditional residual flux (T′

∇ϕ′ ) and residual storage (S′ ϕ′ ), 
as indicated by the nearly constant means and large standard deviations 
of R2 and L2 in Fig. 2. Specifically, had the estimates been improved 
(close to the correct field), the residual flux and storage terms should 
have diminished so should the means and standard deviations. As dis
cussed in section 3.1.2, we emphasize that additional non-redundant 
information from additional pumping or observation wells (Wen et al., 
2019; Wang et al., 2019) guarantees the estimate’s improvement. 

6. Single realization 

We also present the results based on a single realization below. The 
reference T and S fields and the wells for this case are displayed in Fig. 4a 
and b. 

Estimated T. The estimated T fields using the OHT with the pumping 
rate of the periods (15, 20, 50, 100, and the combination of all the pe
riods) are displayed in Fig. 5a, b, c, d, and e, respectively. In Fig. 5f, g, h, 
i, and j, we show the scatter plots of the reference field against the 
estimated, based on OHT with different periods. Also included in these 
figures are the regression lines’ slope and intercept, the correlation be
tween the estimated and reference lnT (R2), and the mean squared error 
of lnT (L2). 

According to these figures, OHT using different single or multifre
quency excitations captures the general pattern of heterogeneity. Exci
tations of different frequencies improve the estimates at some locations 
and worsen them at others. There is no clear winner or loser for char
acterizing the detailed parameter variations. 

Intuitively, a low-frequency (long period) excitation could cover a 
greater area than the high frequencies; high-frequency (short period) 
excitations could map details near the well field. Consequently, a 
multifrequency (a mixture of different periods) excitation, combining 
various frequencies’ merits, could improve the overall estimate. 
Nevertheless, the scatter plots of this realization suggest otherwise. In 
particular, the slope, intercept, R2, and L2 values indicate that the 
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Fig. 2. The mean performance metrics (R2 and L2) of estimated lnT and lnS 
using pumping rates with different frequencies (or periods, ω− 1 = 15, 20, 50, 
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the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Table 1 
t values for the performance metrics for lnT and lnS estimates using excitations 
with different frequencies. * indicates significant (The performance of multi
frequency is different than the single frequency).  

Period 15 20 50 100 

L2 T estimates  0.94  0.26  0.84  1.71 
R T estimates  0.70  0.61  0.91  0.98 
L2 S estimates  5.97*  3.70*  3.48*  6.39* 
R S estimates  2.61*  1.79  1.49  2.04*  

Y.-L. Wang et al.                                                                                                                                                                                                                                

http://tian.hwr.arizona.edu/downloads
http://tian.hwr.arizona.edu/downloads


Journal of Hydrology 596 (2021) 126105

6

estimate based on a period of 15 (a high frequency) is least satisfactory, 
and based on a period of 20 is the best. The scatter plots also indicate 
that the estimate based on all frequencies (multifrequency, Fig. 5j) is 
worse than that in Fig. 5i based on a long period of 100 (a low fre
quency). The results of this realization contradict the intuition. How
ever, they corroborate the large standard deviations in R2 and L2 values 
in Fig. 2. They further demand MC experiments to assess the reliability 
of the OHT estimates for ill-defined inverse problems. 

Estimated S. Plots similar to those in Fig. 5 are presented in Fig. 6 a 
through j for S estimates. Akin to the results in Fig. 5, OHTs with 
different frequencies create different local-scale anomalies but derive a 
similar general spatial distribution. Fig. 6f shows that excitation with a 
period of 15 yields the least acceptable estimate. The slope, intercept, 
R2, and L2 values in Fig. 6j from multifrequency excitation are superior 
to those with different single frequencies. These results seem to follow 
our intuition but contradict the previous findings based on the T esti
mates. This contradiction may be because T and S behave differently and 
interact with each other. Such conflicting T and S estimates’ behaviors 
highlight the uncertainty in results from OHT with excitations of 
different frequencies in a single realization. The MC simulations thus are 
deemed to be appropriate. 

7. Effects of domain size and Time-Domain solution 

To show that the results in the above examples are independent of 
the domain size, the correlation scale, and the solution technique (i.e., 
time- or frequency-domain solution), we present an additional MC 
example, solved by the frequency-domain equations (eq. (3)). 

The new aquifer is 98 m × 98 m, consisting of 70 × 70 rectangular 
elements; the grid spacing varies, as shown in Fig. 7. The OHT uses nine 
wells (Fig. 7), and the horizontal and vertical spacings between the two 
wells are 5 m. The spacing is 9 times smaller than the size of the entire 
domain. The width of the element is 0.5 m near the well and 2 m in the 
remote region. A zero-amplitude boundary bounds the aquifer. For this 
MC simulation, six hundred realizations of a random T field with a mean 
of T = 10− 4 m2/s and a variance of 1 in lnT and correlation lengths are 
λx = λy = 5 m. The S field is homogeneous with a value of 10− 4, as in 
previous OHT analyses by others. 

The OHT surveys employ three sequential pumping tests at three 
wells (square in Fig. 7) with periodic pumping rates of four periods 
(ω− 1=400, 1600, 3600, and 10800 s/cycle). As a result, 12 individual 
pumping tests (4 frequencies times 3 pumping wells) are conducted for 
each realization. The numerical accuracy limits the selection of the 
lower periods. The radius of influence corresponding to each period is 
20, 40, 60, and 104 m, based on the formula (i.e., the distance of signal 
propagation is proportional to 

̅̅̅̅̅̅̅̅̅̅̅̅
T/Sω

√
) in Cardiff and Barrash (2015). 

During the test at a selected well, the other eight wells’ responses are 
collected for inverse modeling. 

We then use VSAFT2 to simulate the OHT surveys by solving the 
frequency domain’s governing equation (Eq. (3)). The aggregation- 
based algebraic multigrid method (Notay, 2010, 2012; Notay and 
Napov, 2012). Similarly, we derive the sensitivity using the adjoint 
method in the frequency domain. Afterward, SimSLE in VSAFT2 esti
mates the T field over the entire domain. We use the same means, var
iances, and correlation lengths as those used to generate the random 
field as the prior information of SimSLE to focus on the effect of different 
pumping frequencies on the estimate. Following previous studies that 
claim improvements due to multifrequency tests, we treat the S field as 
known and estimate the T field only. Also, we evaluate T estimates in the 
near-field (the area within 15 m from the center of the domain, or 3 
times of the correlation length) and the entire domain. 

Near-Field Estimates. We summarize in Fig. 8 the mean and stan
dard deviation of R2 and L2 of the near-field T estimates of the MC ex
periments at different frequencies. Once again, we observe large 
standard deviations of R2 and L2 for different frequencies, indicative of 
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large variability of the OHT performance between different realizations. 
The mean and standard deviation of R2 and L2 remain almost identical 
despite the pumping rate frequency. Based on t-test (Table 2), we find 
that the differences in mean R and L2 values between the estimates using 
different single frequencies and the combination of all frequencies are 
statistically insignificant (i.e., no consistency in the test). These results 
suggest that using multiple frequencies in OHT does not necessarily 
improve the estimation on average. 

For a single realization, the near-field’s estimates are displayed in 
Fig. 9a to e. They are for periods 400, 1600, 3600, 10800, and the 
combination, respectively. Their scatter plots are illustrated in Fig. 9f 
through j. Visual comparisons of Fig. 9a through e with the reference 
field in Fig. 7b reveal that estimates using different single frequencies 
and multifrequency capture the reference field’s general features. 
However, the slope, intercept, R2 and L2 values of the scatter plots 
indicate that the estimates based on period 1600 and all periods are the 
best, although the former’s slope and intercept are better than the latter. 

Also, notice that from period 10,800 is the worst. Again, the estimate 
using multifrequency (Fig. 9j) is not superior to others in this single 
realization. 

Entire Domain Estimates. Examining the MC estimates over the 
entire domain, we find that the mean and standard deviation of R2 and 
L2 of the estimates using the multifrequency pumping rate seems slightly 
better than the single frequency test (Fig. 10). Nevertheless, a t-test 
(Table 3) indicates that the differences in mean R values between the 
estimates using different single frequencies, and the combination of all 
frequencies are statistically insignificant (i.e., no consistency in the test). 
However, the differences in mean L2 values are statistically significant. 
These results suggest that the averaged improvements in the estimates 
using multiple frequency OHT over many possible cases is not 
significant. 

Comparing Figs. 10 and 8 (near-field estimates), we notice that the 
values of R2 of all frequencies have dropped to around 0.2. Meanwhile, 
the values of L2 have increased to 0.7. That is, performance metrics, R2 

Fig. 7. Synthetic aquifer with large simulation domain. White circles are the observation wells and the squares represent pumping wells. Four boundaries are the 
constant head. The reference hydraulic transmissivity T (m2/s) field of one realization. 
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and L2 values, are affected by the domain size since they are the statistics 
over the entire domain, in which the uncertain estimates at far-field 
dominate the overall statistics. However, these values’ differences be
tween different frequencies remain similar for the near-field and the 
entire domain. 

The results based on a single realization are discussed below. The 
reference T field is displayed in Fig. 7. The estimated T fields using the 
head in the frequency domain and the pumping rate with different pe
riods (400, 1600, 3600, 10800, and the combination of all the periods) 
are illustrated in Fig. 11a,b,c,d, and e, respectively. The reference field’s 
scatterplots and the estimates, using different periods, are plotted in 
Fig. 11f, g, h, i, and j. 

Also included in these figures are the performance metrics (i.e., R2, 
L2, and slope and intercept of the linear relationship between the esti
mated and reference lnT). These performance metrics indicate that the 
estimate from period 400 is the least acceptable, and from all periods is 
the best. It has slightly better values of performance metrics than the 
cases with periods 1600 and 3600). From these plots, it is also clear that 
the excitations with a period of 400 cannot resolve heterogeneity 
beyond the near-field. This finding is based on the horizontal line at lnT 
value of − 9 on the estimated field axis. This line indicates that the es
timates remain as the initial mean lnT––no improvement due to a rapid 
decade of the excitations’ strength. As the period increases, this hori
zontal line becomes smeared, indicating more heterogeneity at far-field 
is detected, although imprecisely. Again, the domain size affects per
formance metrics, which are statistics for the entire domain. 

The small and large domain OHT analyses suggest that the results 
from a single realization (or experiment) could be inconclusive. Besides, 
the effect of boundary conditions does not influence the estimated 
parameter values near the well field. This result is attributed to the fact 
that both forward and inverse simulations employ the same boundary 
conditions. For the effects of unknown boundary conditions on HT, we 
refer it to Liu et al. (2020), Daranond et al. (2020) and Sun et al. (2013). 

Discussion. A revisit of the well-known first-order analysis of the 
head variation in the time domain at a location (Gelhar, 1993; Wu et al., 
2005; Sun et al., 2013) should elucidate the results mentioned above. 

Note that the first-order analysis has been proved valid for the variance 
of lnT even greater than 1 (highly nonlinear problems) and has been 
widely adopted (e.g., Gelhar, 1993). Specifically, under given boundary 
and initial conditions and known stress, simulated head perturbation 
(deviation from the mean head) at any location in a heterogeneous 
aquifer can be approximated as a sum of the product of the head 
sensitivity to and the magnitude of the heterogeneity (T perturbation 
around its mean) at every aquifer location. Consequently, a large T 
perturbation at a far distance where the sensitivity is low could signif
icantly impact the head at a given location. Similarly, a small T 
perturbation at a high sensitivity area may have little impact on the head 
at that location. In other words, knowing the sensitivity distribution 
alone (without knowing T perturbation distribution), one cannot 
determine the head perturbation at a location. 

Inverse modeling seeks a T field that can produce the head pertur
bation at observation wells. The explanation above suggests that even if 
the sensitivity distribution due to excitation of a given frequency is 
known, an infinite number of T perturbation fields remain, yielding the 
same head perturbation at an observation location. As illustrated in 
Figs. 6 and 7 in Cardiff et al. (2013), different frequencies’ sensitivity 
maps are different but maintain similar patterns. A multifrequency 
sensitivity map would maintain a similar shape but be dominated by the 
low frequency, even though some locations’ sensitivity values may 
differ. Specifically, the sensitivity maps of different frequencies are 
highly correlated. 

Inverting a multifrequency test would include additional head ob
servations at different frequencies at the same wells, but these obser
vations are highly correlated. In other words, the multifrequency test 
generates a system of nonlinear and mutually dependent (or correlated) 
equations. Because of their mutual dependence, many possible hetero
geneous T fields still could lead to the head values at the observation 
location. Minor differences in heads and sensitivity values due to nu
merical or measurement errors may produce additional T anomalies 
comparing with a single frequency OHT. These anomalies may be 
acceptable or unacceptable (see Figs. 6 and 9): uncertain estimates. Such 
uncertain (fluctuating) results are also vivid in RMSE values for cases 1 
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Table 2 
t values for the performance metrics for lnT estimates using excitations with different frequencies. * indicates significant (The performance of multifrequency is 
different than the single frequency).  

Period 400 1600 3600 10,800 

L2  1.64  5.96*  11.46*  15.58* 
R  − 0.0044  0.544  1.26  1.76  
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metrics of the estimated and reference lnT. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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through 13 in Table 1 of Zhou et al. (2016). Due to this uncertainty, MC 
simulation is appropriate to ensure that the multifrequency estimates’ 
improvement holds over many possible heterogeneous aquifers (not just 
a coincidence). Our MC simulation results and statistical tests indicate 
that a multifrequency estimate is statistically similar to single low- 
frequency estimates on average. 

In contrast to multifrequency pumping rates, adding observation 
wells at new locations creates new independent equations for inverse 
modeling. If the number of equations still is less than the number of 
unknowns, the inverse problem remains ill-defined. But these indepen
dent equations reduce the possible number of solutions and, in turn, 
uncertainty. Likewise, inverse modeling starting with prior information 
close to the true field could yield a good estimate, even though it does 
not add independent equations. But such a prior would vary with the 
true field. For these reasons, MC simulation with the same prior is 
appropriate for assessing the multifrequency test’s improvements. 

8. Ergodicity 

This section revisits the ergodicity issue to explain the large standard 
deviations of R2 and L2 in the Monte Carlo simulation. This revisit is 
necessary because many studies have disregarded the ergodicity 
assumption embedded in the inverse modeling of ill-defined problems. 
Wang et al. (2019) raised this issue and demonstrated that a large 
number of spatial observations are necessary to fulfill the ergodicity 
assumption, as illustrated by the narrower standard deviations of per
formance metrics in Fig. 10 of their paper. However, the ergodicity issue 
in their study is somewhat different from what we encountered in the 
OHT. As a result, this issue deserves a further revisit. 

The large standard deviations of R2 and L2 in Monte Carlo simulation 
(Figs. 2, 8, and 10) indicate that estimates of OHT with pumping rates of 
different frequencies or multifrequency could vary significantly from 
one realization to another. We attribute these deviations to the unful
filled ergodicity assumption. Ergodicity is the foundation for the appli
cation of stochastic theories to a single realization of a random field. It is 
commonly recognized as the requirement that the aquifer must be larger 

than many times of the ensemble correlation scale. With such a large 
aquifer, the spatial mean, variance, and correlation structures of 
parameter heterogeneity in one realization are identical to those in the 
ensemble statistics. However, the ergodicity for the state variable fields 
(e.g., head and concentration) has rarely been explored. As pointed out 
in p.48–49 of Yeh et al. (2015b), the state variable ergodicity requires 
that the state variable at the observation well samples sufficient het
erogeneity (i.e., obtain representative samples of heterogeneity, REV). 

To illustrate the necessary conditions for satisfying the state variable 
ergodicity, we use the head variance (or standard deviation from the 
mean head) in the observation well of a cross-hole test in a 2-D infinite 
aquifer as an example. First, one must recognize that the head at any 
location theoretically is impacted by all heterogeneity in the domain 
once pumping starts due to the pressure propagation’s diffusive nature. 
However, the influence of heterogeneity from different locations on the 
head is not equal in time and space. For example, previous cross- 
correlation analysis indicates that the head at an observation well, at 
early times of a cross-hole test, is governed by heterogeneity between 
pumping and observation wells. However, heterogeneity at both sides of 
the observation and pumping wells dictate its behavior at the late time. 
This fact has been explored by Wu et al. (2005), Sun et al. (2013), and 
Wen et al. (2019) for 2-D aquifers and Mao et al. (2013b) for 3-D un
confined aquifers.) 

While the influence of heterogeneity from different times and loca
tions on the head is not equal, the variance of a random parameter field 
in the ensemble sense is the same everywhere. Also, the correlation 
pattern at a given time is identical regardless of the paired pumping and 
observation wells’ locations. For this reason, the head variance at the 
observation well evaluated on the mean parameter field is independent 
of the pair’s location in the aquifer. 

In the case of one realization, the parameter perturbations (T′

(x) and 
S′

(x), as opposed to their ensemble variances, vary at different locations. 
Thus, the heterogeneity in the well pair’s vicinity dictates the head 
perturbation at the observation well. To ensure that the head pertur
bation reflects the effects of the parameters’ ensemble variability, one 
must simulate a cross-hole test for a long time in a large domain (many 
times of the correlation scale of the parameter). Otherwise, many cross- 
hole tests must be performed at many locations. In these cases, the head 
experiences the same spatial statistics as the ensemble one (i.e., state 
variable ergodicity is met). In the cases where a small domain is used, 
Monte Carlo simulation is a must. It derives many possible heads at the 
observation well during a cross-hole test at fixed locations, using many 
random field realizations in this domain. 

This study examines each element’s conditional parameter estimate 
in a highly parameterized model aquifer, given some observed heads. 
Since the problem is under-determined, many possible estimates exist. 
Like the head variance discussed previously, the estimates are dictated 
by the local heterogeneity near the observation and pumping wells. 
Therefore, the performance metrics (e.g., R2 and L2) of the estimates 
could vary with the OHT well locations or from one realization to 
another, as demonstrated by the single realization’s result in the pre
vious sections. To obtain the metrics’ representative values, one needs a 
dense well field, which permits the observed heads in the inverse model 
to experience sufficient heterogeneity to satisfy the state variable 
ergodicity (Fig. 11 in Wang et al., 2019). Otherwise, conducting a Monte 
Carlo simulation of OHT at a given well field and evaluating the average 
OHT performance over many realizations of this aquifer’s heterogeneity 
is necessary. This approach ensures the meaningful statistical evaluation 
of the inverse modeling results. 

Many published works have overlooked this ergodicity issue and 
claimed that using a sparse network in one heterogeneous field, OHT or 
PPT increases the estimate resolution. These claims are subjective since 
neither is the above ergodicity issue recognized nor has the theoretical 
proof been provided. 
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Fig. 10. The mean performance metrics (R2 and L2) of estimated lnT using 
pumping rates with different frequencies (or periods, 1 ω− 1 

= 400, 1600, 3600, 
and 10,800 [s/cycle]) and with multiple frequencies (i.e., all of the different 
frequencies) in the large simulation domain. The vertical bar represents the 
mean metrics +/− one standard deviation of the metrics. 

Table 3 
t values for the performance metrics for lnT estimates using excitations with 
different frequencies. * indicates significant (The performance of multifrequency 
is different than the single frequency).  

Period 400 1600 3600 10,800 

L2  37.5*  19.69*  11.27*  11.57* 
R  2.33*  1.26  0.75  0.86  
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Fig. 11. a)-e) are the estimated lnT (m2/s) fields using different and multiple frequencies in the large simulation domain.  
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9. Conclusion 

This paper conducts a stochastic analysis to elucidate the effective
ness of delineating aquifer hydraulic heterogeneity using a periodic 
pumping test or an oscillatory hydraulic tomography. The analysis 
shows that unknown heterogeneity, heads, and fluxes produce the 
ensemble residual flux and storage terms in the ensemble mean equa
tions. These terms lead to frequency dependence, scenario dependence, 
and dynamic effects of effective hydraulic parameters. Further, this 
analysis shows that manipulating the frequency of the pumping rate 
does not eliminate these terms. These terms vanish only if T and S dis
tributions or water level and flux fields are measured everywhere. 

Results of Monte Carlo simulation confirm the analysis that the 
multifrequency PPT or OHT does not increase the resolution of aquifer 
characterization. The robustness of multifrequency tests proclaimed by 
the previous studies misunderstood the following: 1) Change in sensi
tivity value alone does not warrant estimates’ improvements. That is, 
according to some sensitivity analysis, multifrequency excitations may 
appear to bring forth some additional information. Still, without addi
tional observation wells, the heterogeneity’s location remains unknown. 
2) The ergodicity assumption ingrained in the ill-defined inverse prob
lems is overlooked. In other words, the results of PPT or OHT from a 
single realization or experiment could be misleading. For these reasons, 
we advocate that Monte Carlo simulation must be employed to evaluate 
such inverse modeling’s results. Moreover, the dense monitoring 
network and cost-effective data collection procedure are the keys to 
aquifer characterization. Such common sense is, however, often ignored. 

Lastly, we do not discredit OHT or PPT. As noticed by many, the 
oscillating signals can easily extract from background signals such as the 
sensor noise, sensor drift, and other hydraulic influences (e.g., another 
nearby pumping, river stage changes, etc.). However, constant-rate 
pumping tests could overcome these issues if the temporal sampling is 
sufficiently dense and the signal-to-noise ratio is large enough (Mao 
et al., 2011, 2013b). Nevertheless, OHT is extremely useful in charac
terizing contaminated aquifers where contaminated groundwater and 
discharge are prohibited. For this reason, OHT is highly desirable for 
pump and treat remediation sites where groundwater is pumped out for 
treatments and reinjected back to aquifers. 

10. Key points 

1. Manipulating pumping rate frequency alone does not warrant esti
mate improvement. 

2. Monte Carlo simulation shows that the estimates from different fre
quencies and multifrequency tests are indistinguishable on average.  

3. A dense wellfield or Monte Carlo simulation is necessary to satisfy 
the ergodicity embedded in inverse modeling evaluation. 
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