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Abstract 

Accurate characterization of heterogeneity in groundwater basins is crucial to the 

sustainable management of groundwater resources. This study explores the temporal 

sampling issues and the role of flux measurements in the characterization of 

heterogeneity in groundwater basins using numerical experiments. The experiments 

involve a digital basin imitating the groundwater basin of the North China Plain (NCP), 

where the groundwater exploitation reduction program is ongoing. Using the 

experiments, we champion that the reduction program could collect groundwater level 

information induced by operational variations of existing pumping wells at different 

locations in the basin. Such a dataset could serve as a basin-scale hydraulic tomography 

(HT) to characterize the basin-scale heterogeneity cost-effectively. Both steady-state 

and transient-state inversion experiments demonstrate the advantage of HT surveys in 

characterizing basin-scale heterogeneity over conventional pumping tests at fixed well 

locations. Additionally, head data at the early, intermediate, and late time from well 

hydrographs should be selected for the HT analysis to maximize HT’s power and save 

computational costs. When accurate geological zones are incorporated in prior 

information, flux measurements significantly improve parameter estimates based on 

conventional pumping tests. However, their effects are less noticeable for long-term HT 

surveys in such basin-scale aquifers without fissures or fractures. This basin-scale 

tomographic survey example serves a guide for field data collection and optimization 

of the analysis of future basin-scale HT. 
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1. Introduction 

The effective management of basin-scale groundwater resources depends upon the 

knowledge of aquifer properties. Behaviors of groundwater flow and solute transport 

are generally dictated by the spatial patterns of the heterogeneous hydraulic parameters. 

Thus, the reliability of subsurface heterogeneous characterization in a groundwater 

basin directly determines the performance of groundwater numerical simulation, 

prediction, and scenario analysis. 

Over the past two decades, hydraulic tomography (HT) has shown a great potential 

for high-resolution subsurface characterization in numerical studies (Cardiff, Bakhos, 

Kitanidis, & Barrash, 2013; Illman, Berg, Liu, & Massi, 2010; Illman, Craig, & Liu, 

2008), laboratory sandboxes (Illman, Liu, & Craig, 2007; Liu, Illman, Craig, Zhu, & 

Yeh, 2007; Zhao, Illman, & Berg, 2016), and field-scale studies (Berg & Illman, 2011; 

Cardiff, Barrash, & Kitanidis, 2012; Fischer et al., 2017; Kuhlman, Hinnell, Mishra, & 

Yeh, 2008; Liu et al., 2020a; Zha et al., 2016). Many researchers (such as Cardiff et al., 

2009; Cho, Zhao, Thomson, & Illman, 2020; Illman et al., 2007; Soueid Ahmed, Zhou, 

Jardani, Revil, & Dupont, 2015; Yeh & Liu, 2000; Zhao & Illman, 2017) have 

demonstrated steady-state HT’s ability to estimate hydraulic conductivity or 

transmissivity heterogeneity. Likewise, many have shown the power of transient HT to 

image hydraulic conductivity and specific storage fields (e.g., Cardiff, Barrash, & 

Kitanidis, 2013; Hao et al., 2008; Luo, Zhao, Illman, & Berg, 2017; Mohammadi & 

Illman, 2019; Zhao & Illman, 2018; Zhu & Yeh, 2005). 

Conventional pumping tests are time-consuming and costly for the 



 
 

characterization of a groundwater basin. HT has significant advantages over the 

conventional aquifer tests since HT employs sequential pumping or injection tests in an 

existing well field to derive spatially varying aquifer properties. It sequentially changes 

the pumping or injection location and monitors aquifer responses at other wells to yield 

information about aquifer heterogeneity. HT is analogous to multiple snapshots of 

subsurface hydraulic heterogeneity at different perspectives and angles (Zhao et al., 

2019). It is also equivalent to geophysical tomography surveys (Butler, McElwee, & 

Bohling, 1999; Jiménez, 2015). As a result, observed data from pumping at different 

locations throughout the aquifer contain more information about heterogeneity than a 

single pumping test. Thus, an inverse model with these data can lead to the detailed 

spatial patterns of high and low permeable zones over a large area. 

However, it is challenging to effectively stress the entire groundwater basin using 

conventional pumping operations in the HT survey. For this reason, Yeh and Lee (2008) 

promoted changing the way we collect and analyze data for groundwater 

characterization. Yeh et al. (2008) further proposed exploiting natural stimuli (i.e., 

atmospheric pressure variation, lightning, solid earth tides, river stage, etc.) as possible 

energy sources for basin-scale HT surveys. Subsequently, Yeh et al. (2009) 

demonstrated the possibility of using river stage variations for basin-scale subsurface 

tomographic surveys. Wang et al. (2017) applied the river stage tomography concept to 

characterize aquifer heterogeneity in the Zhuoshui river fan, Taiwan. 

To facilitate a basin-scale HT survey, Kuhlman et al. (2008) used multiple HT 

surveys to cover an entire basin. Likewise, Zha et al. (2019) exploited aquifer responses 

from the change in the flow fields due to variations in pump-and-treat operation as a 

large-scale HT survey. They mapped the low permeable zones for hydrofracking to 

enhance remediation effectiveness at Tucson, Arizona, USA. Luo et al. (2020) 



 
 

demonstrated that the HT analysis using long-term pumping/injection and water-level 

records could yield reliable hydraulic parameter estimates, significantly improving 

transport predictions over a large area. 

However, many practical issues facing basin-scale HT surveys remain to be 

investigated: (1) the duration and magnitude of the pumping rate, (2) the frequency of 

temporal sampling, and (3) the data fusion of head, flux and tracers for enhancement of 

aquifer characterization. Specifically, should field tests collect steady-state or transient 

data for HT inversion? How many observation heads at different times in a well 

hydrograph are required to obtain reasonable estimates of hydraulic parameters while 

minimizing computational burdens for HT analysis? Whether additional data (flux, 

tracer, etc.) can contribute to the improvement of the estimates? 

The computational efficiency is also a challenging issue for large-scale inverse 

problems, and high computational costs lie in calculating sensitivities, auto-covariances, 

and cross-covariances (Zhao & Luo, 2020). In particular, analysis of transient data from 

a series of pumping tests represents a substantial computational burden (Bohling, Zhan, 

Butler, & Zheng, 2002). Many previous works have attempted to reduce the 

computational costs without much loss of accuracy (Kitanidis & Lee, 2014; Lee & 

Kitanidis, 2014; Lee, Yoon, Kitanidis, Werth, & Valocchi, 2016; Lin, Le, O'Malley, 

Vesselinov, & Bui-Thanh, 2017; Liu, Zhou, Birkholzer, & Illman, 2013; Sánchez-León, 

Erdal, Leven, & Cirpka, 2020; Zha et al., 2018). The steady shape approach proposed 

by Bohling et al. (2002) retains the computational efficiency of a steady-state analysis, 

in which the head gradient becomes constant with time. However, this condition exists 

only in the ensemble sense (Zha et al., 2016). 

Given that the computational cost is overwhelming when many head data are used 

for an inverse model, a practical question arises: Are all head data in a well hydrograph 



 
 

used? Zhu and Yeh (2005) showed that the heads over time are highly correlated and 

suggested using head data at sparse time intervals. Cardiff et al. (2012) interpreted 

transient HT data only using the selected early-time, intermediate-time, and late-time 

data points from the drawdown curves. Sun et al. (2013) investigated optimal sampling 

times of drawdowns for a small-scale HT analysis. However, the temporal sampling 

issues of subsurface heterogeneous characterization in groundwater basins remain to be 

investigated. 

In addition, head measurements at many fully screened wells only represent depth-

averaged head values, and they do not carry information about vertical aquifer 

heterogeneity. Li et al. (2008) overcame this issue by using estimates of hydraulic 

conductivity profile from flowmeter measurements along the fully-screened well as 

additional information for HT. In contrast, Zha et al. (2014) developed an approach to 

include flux information during HT survey for mapping fracture distributions in a 

hypothetic geologic medium. Tso et al. (2016) demonstrated that a joint interpretation 

of head and flux data could enhance the resolution of the HT estimates. 

The North China Plain (NCP) is one of the hotspots of groundwater depletion in 

China, where groundwater contributed to most of the NCP’s total water consumption 

(Zheng et al., 2010). Numerous pumping and monitoring wells are widely distributed 

in the NCP, and long-term groundwater level monitoring data have been collected for 

many years (Cao, Zheng, Scanlon, Liu, & Li, 2013). Since 2014, the Chinese 

government has initiated the groundwater-exploitation reduction program to restore the 

groundwater resources and alleviate associated environmental problems in the NCP (Xu, 

2017; Zhao et al., 2017). As a result, the total amount of groundwater exploitation is 

expected to be reduced significantly. This reduction plan could involve the changes in 

operations of pumping wells at different times and locations. Inevitably, the basin-scale 



 
 

flow field could be modified by the alternation, intermittent shutdown, and resumption 

of pumping wells at different locations of the NCP. Such changes in flow fields are 

tantamount to a large-scale HT survey in the NCP. Because the reduction plan is a 

national policy that will be accomplished, it is an opportunity to address the issues of 

aquifer heterogeneity in the NCP by utilizing long-term datasets of aquifer responses 

from existing wells. However, such a long-term dataset in the NCP is not available for 

us at this moment. Consequently, in this study, we use a synthetic two-dimensional, 

horizontal, confined aquifer to demonstrate the feasibility of the proposed approach. 

Previous studies on synthetic HT surveys at the NCP have proven that the 

feasibility of utilizing head data induced by groundwater exploitation reduction to 

enhance basin-scale aquifer characterization (Liu et al., 2020a), as well as the potential 

of HT in identifying the boundary conditions of groundwater basins (Daranond, Yeh, 

Hao, Wen, & Wang, 2020; Liu et al., 2020b). However, these studies did not consider 

the temporal sampling issues and the role of flux data for subsurface characterization. 

For this reason, the main objectives of this paper are as follows. (1) demonstrate the 

advantages of the hydraulic tomographic survey over the multiple simultaneous 

pumping tests for steady-state and transient-state inversions; (2) explore the temporal 

sampling issues and propose a reasonable strategy of data selection in the time domain 

for HT analysis; (3) evaluate the performance of T and S estimates using head and flux 

joint inversion. The findings of this study may guide the design of HT surveys and 

effectively collect appropriate field data in time during the reduction plan for basin-

scale aquifer characterization. 

 

 

 



 
 

2. Methods 

2.1. Groundwater Flow in Two-dimensional Saturated Media 

In this study, we assume that the following governing flow equation can describe 

the groundwater flow induced by pumping in a two-dimensional, depth-averaged, 

saturated, heterogeneous confined aquifer: 

              ∇ · [𝑇𝑇(𝒙𝒙)∇𝐻𝐻] + 𝑄𝑄(𝒙𝒙𝑝𝑝) = 𝑆𝑆(𝒙𝒙) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                       (1) 

subject to the boundary and initial conditions: 

      H �Γ1
= H1, [−T(𝐱𝐱)∇H] · 𝐧𝐧 �Γ𝟐𝟐

= q, and H �
t = 0

= H0               (2) 

where, in equation (1), H is the total head [L], x is the spatial coordinate (x= (x, y), [L]), 

Q(xp) is the pumping rate per unit area (L/T) at the location xp, T(x) is the transmissivity 

[L2/T], and S(x) is the storativity [-]. Additionally, the right-hand term of Equation (1) 

becomes zero when it describes steady-state groundwater flow. In Equation (2), H1 is 

the prescribed total head at Dirichlet boundary Γ1, q is the specified flux at Neumann 

boundary Γ2, n is a unit vector normal to Γ2, and H0 represents the initial head before 

stressing the aquifer. 

In this study, these governing equations under steady and transient conditions are 

solved by the code of VSAFT2 (Variably Saturated Flow and Transport 2-D) developed 

by Yeh et al. (1993) available at http://tian.hwr.arizona.edu/downloads. The solution 

yields spatial-temporal variations of total head and flux, which are used to estimate the 

spatial distributions of hydraulic properties (T and S) by an inverse algorithm described 

below. 

2.2.  HT Analysis 

In this study, steady and transient HT experiments were performed using the 

Simultaneous Successive Linear Estimator (SimSLE) developed by Xiang et al. (2009). 

The SimSLE algorithm is an extension of the Sequential Successive Linear Estimator 

http://tian.hwr.arizona.edu/downloads


 
 

(SSLE) (Zhu & Yeh, 2005). In the SSLE method, the head information from discrete 

sources is sequentially assimilated into the inversion process. The SimSLE algorithm 

has some advantages over the SSLE. (1) SimSLE needs to evaluate the adjoint state 

equation only once for a given observation location using new parameter estimates from 

all pumping tests since the adjoint state equation is independent of the pumping rate 

and pumping location. However, SSLE needs to solve the adjoint state equation for 

each pumping test because the parameters in the adjoint state equation are modified for 

each pumping test. (2) SimSLE avoids the loop iteration of SSLE, and thus improves 

computational efficiency. (3) adding data in different sequences in SSLE may lead to a 

slightly different final result, but SimSLE does not have such a problem. (4) SimSLE 

simultaneously incorporates all the aquifer signals from multiple pumping tests during 

an HT survey in the estimation of hydraulic properties, providing more constraints for 

the inverse problem and thus converges faster than SSLE. However, the simultaneous 

inclusion of all data makes SimSLE more computationally intensive than SSLE, as the 

covariance matrix will become very large. A brief description of the SimSLE algorithm 

is given below. 

In this study, the natural logarithms of hydraulic parameters (T and S) for each 

geological zone are treated as random variables described by a prior joint probability 

distribution, characterized by the mean, variance, and correlation scale. Likewise, the 

hydraulic head (H) and the magnitude of Darcian flux (Q) are also treated as spatial 

stochastic processes, expressed as the sum of the unconditional mean and the 

unconditional perturbation (i.e., H = 𝐻𝐻� + ℎ, Q = 𝑄𝑄� + 𝑞𝑞). 

The SimSLE starts with the successive linear estimator (Yeh, Jin, & Hanna, 1996) 

to estimate the conditional expectation of the aquifer parameters (T and S) conditioned 

on the observed data. The covariance function in the SLE is calculated by using an 



 
 

exponential covariance model, and the adjoint-state method calculates the sensitivity 

matrix. 

Then, the conditional mean estimates f are successively improved by the weighted 

differences between the observed and the simulated values: 

                  𝑓𝑓(𝑟𝑟+1) = 𝑓𝑓(𝑟𝑟) + 𝑤𝑤(𝑟𝑟)𝑇𝑇(ℎ𝑜𝑜𝑜𝑜𝑜𝑜 − ℎ(𝑟𝑟))                   (3) 

where 𝑓𝑓(𝑟𝑟)  is the conditional expectation of f at iteration r, ℎ𝑜𝑜𝑜𝑜𝑜𝑜  is an 𝑚𝑚 × 1 

observed data vector composed of 𝑚𝑚ℎ head data values and 𝑚𝑚𝑞𝑞 flux data sets (where 

𝑚𝑚 = 𝑚𝑚ℎ + 𝑚𝑚𝑞𝑞 ), and ℎ(𝑟𝑟)  is the simulated data values obtained from the forward 

model with the estimated hydraulic parameters at iteration r. 𝑤𝑤(𝑟𝑟) is the weight matrix 

calculated using the conditional auto-covariance of observed data and the cross-

covariance between parameter and observed data. The superscript T represents the 

transpose. The iterative process stops if one of the following two criteria is met. The 

change in variance of the estimated parameter between the current and previous 

iterations is smaller than a specified tolerance. The other is that the change of simulated 

head or flux values between successive iterations is smaller than a user-specified 

tolerance. Details of SLE are available in Yeh et al. (1996), Xiang et al. (2009), and Zha 

et al. (2014). 

To assess the performance of inversion results from all the cases, we use the 

coefficient of determination (R2), the mean square error (L2), the slope, and the intercept 

in this study. Generally, the estimates are considered better, if R2 value and the slope of 

the linear regression line are closer to 1. Likewise, the smaller L2 value and the value 

of intercept approaching 0, signify that the estimated parameter fields are much closer 

to the reference fields. Additionally, visualization of the posterior uncertainty is also 

employed as another approach to evaluating the role of flux measurements in parameter 

estimations. 



 
 

3. Numerical Experiments 

3.1. Site Description 

The Heilonggang (HLG) plain in the NCP is a pilot area of groundwater-

overexploitation control, covering a total area of approximately 2695 km2 (Fig. 1). The 

elevation in the southwest is generally higher than that in the northeast part. The 

aquifers in the NCP are an aquifer-aquitard system (Cao et al., 2013). The unconfined 

and the confined aquifers are separated by an intermittent aquitard composed of silt and 

clay with a thickness of around 10 m (Wei, 2018). The confined aquifer’s T and S values 

vary from 10 to 480 m2/d, and from 0.001 to 0.008, respectively (Wang, 2011). 

The groundwater exploitation reduction program has reduced the total amount of 

groundwater pumping since 2014, via agricultural water-saving projects and water 

transfer from the middle route of the South-to-North Water Diversion Project (Zhao et 

al., 2017). The rebound of the water levels is expected to take place in some regions. 

Thus, the aquifer signals with operational changes of existing wells may provide a good 

opportunity for estimating the hydraulic heterogeneity over the whole basin. 

3.2. Model Setup 

The geometric shape of the synthetic aquifer is identical to the geometry of the 

real groundwater basin. This basin was discretized into 2720 rectangular elements and 

2896 nodes with element dimensions 1 km× 1 km. Since the groundwater flows 

predominantly from the west and southwest parts to the northeast boundary (Fig. 1), 

specified head boundaries were assigned to the A-B, C-D, and E-F segments with 

constant head values of 100 m, 100 m, and 60 m, respectively. The remaining boundary 

segments were prescribed as the impermeable boundaries. The synthetic well-field 

consists of 70 wells, and the well configuration is similar to those in the real basin. The 

numbers and locations of pumping and monitoring wells, and steady-state initial head 



 
 

distribution with no pumping are shown in Fig. 1. 

Reference heterogeneous T and S (Fig. 2) were created with the four geological 

zones of the HLG basin (Fig. 1). Independent random fields of T and S are generated 

for each geological zone. In terms of actual geological data, different ranges of T are 

assigned to the zone 1 (120-240 m2/d), zone 2 (<120 m2/d), zone 3 (240-360 m2/d), and 

zone 4 (360-480 m2/d). Considering the range of transmissivity for each zone, we can 

assume that each zone is mildly heterogeneous with small variations. Therefore, the 

mean lnT (m2/d) values 5.1, 4.38, 5.4, and 5.68 were assigned to zones 1, 2, 3, and 4, 

respectively. The variance of lnT for each zone is 0.1. Likewise, the mean lnS for each 

zone is -5.81, -6.91, -5.12, and -4.89, respectively, and the variance of lnS is 0.1. The 

correlation scales are 20 km in the east-west direction and 5 km in the north-south 

direction. Different random seeds were used to generate independent random fields of 

reference T and S for each geological zone (Fig. 2) using a random field generator 

(Gutjahr, 1989) embedded in VSAFT2 software. 

For inverse modeling of all cases and scenarios in this work, the geometry and 

locations of the four geological zones in the reference fields are assumed known exactly 

(Fig. 1). For initial guesses, each zone is prescribed with a mean T or S value identical 

to that of the corresponding zone in the reference T or S fields. The true correlation 

scales are also assumed known. The details of steady-state and transient-state inversions 

will be explained in the following sections. 

4. Results and Discussion 

4.1. Steady-state Experiments 

The steady-state experiments examined two cases. As shown in Table 1, Case A 

involves a simultaneous pumping at 18 wells (see Fig. 1) with a rate of 3000 m3/d. Case 

B represents an HT survey with three pumping stresses, and each stress involves 



 
 

pumping six different wells at a rate of 3000 m3/d. These wells are listed with 

parentheses in Table 1, and their locations are indicated in Fig. 1. 

The simulated groundwater flow field in Case A shows that the simultaneous 

operation of multiple pumping wells only affected limited portions of the entire aquifer 

(Fig. 3a). Noticeably, the steady-state flow field is mainly altered by the pumping wells 

distributed in the southeast areas adjacent to the impermeable boundary (Fig. 3a). 

However, Case B yields three flow fields with significant differences (Figs. 3b, 3c, and 

3d), equivalent to three snapshots of aquifer heterogeneity at different locations. 

Specifically, each stress produces a different flow (or head) field from the other stress, 

reflecting the effects of heterogeneity at different parts of the basin. As a result, each 

observation well collects heads affected by different heterogeneity during each stress. 

Because of this reason, more information about heterogeneity is recorded at each 

observation than that from simultaneous hydraulic tests at fixed pumping locations. 

Thus, interpretation of the heterogeneity based on the head collected from Case B could 

lead to more detailed heterogeneity. 

Compared Fig. 4a to Fig. 4b, we see that the T tomogram from Case B is closer to 

the reference T field than Case A. For Case A with just one stress, while the main high 

and low permeable zones are identified, the estimated T pattern is smoother than the 

reference field, and the localized geometry is not accurately captured (Fig. 4a). For Case 

B with three stresses, the estimated T tomogram is greatly improved and close to the 

reference T field (Fig. 4b). 

The scatterplots of reference lnT versus estimated lnT are shown in Figs. 4c and 

4d. The performance metrics for HT inversion (Case B), with a higher R2 (0.88), smaller 

L2 (0.029), higher slope (0.89), and lower intercept (0.57), are much better than those 

metrics (R2=0.82, L2=0.043, slope=0.84, and intercept=0.84) from conventional 



 
 

simultaneous pumping tests represented by Case A. 

In summary, the aquifer’s responses to the change in pumping locations, carry 

additional information about the heterogeneity. This result corroborates the explanation 

in Wen et al. (2020). 

4.2. Transient-state Inversion and Temporal Sampling 

4.2.1. Transient HT Experiments 

In transient HT experiments, the initial condition was the simulated steady-state 

responses of the aquifer with no pumping, and two scenarios were considered (Table 

2). Scenario A considered one stress, consisting of three simultaneous pumping events. 

Each event occurred at a group of wells, over three periods (0-1000 days, 1001-2000 

days, and 2001-3000 days) with pumping/reduction/shutdown activities. In Scenario B, 

three stresses and events identical to those in Scenario A were employed, but involved 

a different group of wells at different locations, operating at different 

pumping/reduction/shutdown patterns over the three periods. 

For each scenario, we also examine three cases for the temporal sampling 

investigation (Table 3). Case 1 is the baseline case for the temporal sampling scheme 

where head data are collected at 52 observation wells with a time interval of 100 days, 

leading to 30 head data records for each observation well during each stress. In Case 2, 

ten head data per well at 5, 10, 15, 20, 30, 1000, 1500, 2000, 2500, and 3000 days are 

selected. To reduce the computational cost to one-third of Case 1, we select these data 

at early-mid-late times (i.e., 5, 10, 15, 20, 30, 1000, 1500, 2000, 2500, and 3000 days) 

of the well hydrographs. In Case 3, we further reduce the computational cost by 

selecting only five observation data per well (i.e., 1000, 1500, 2000, 2500, 3000 days), 

representing mid-late data of the well hydrographs. 

 



 
 

4.2.2. Performance of Scenarios A and B 

The tomograms and performance metrics from the baseline case of Scenarios A 

and B (designed as Scenario A1 and Scenario B1, respectively) are compared. The 

estimated fields of T and S, scatterplots as well as performance metrics are shown in 

Figs. 5 and 6. 

The T field from Scenario B1 performs slightly better than Scenario A1 in the 

characterization of hydraulic connections (Figs. 5a and 5b). The scatterplots of lnT in 

both cases also provide further evidence (Figs. 6a and 6b). Scenario A1 captures the 

dominant low and high T zones of this basin-scale aquifer with good evaluation metrics 

(R2=0.87, L2=0.030, slope=0.86, and intercept=0.73), while the scatter points from 

Scenario B1 are closer to the 1:1 line with a little improvement in R2 (0.88), L2 (0.027), 

slope (0.89), and intercept (0.57). Additionally, the transient-state inversion 

outperforms the steady-state inversion in T estimates by comparing the performance 

metrics between them (Figs. 4c, 4d, 6a, and 6b). 

Regarding S estimates, the S tomogram from Scenario A1 is comparable to the 

reference S field. However, the geometric shapes of the high and low S regions are not 

accurately captured and present a localized smooth appearance (Fig. 5c). Scenario B1 

yields a more detailed aquifer heterogeneity (Fig. 5d) than Scenario A1, relative to the 

reference S field (Fig. 2b). The comparison of estimated lnS versus the reference lnS 

also demonstrates that Scenario B1 presents a better performance for S estimation than 

Scenario A1 (Figs. 6c and 6d). The values of R2 and slope increase from 0.91 and 0.92 

in Scenario A1 to 0.93 and 0.93 in Scenario B1, respectively. While the L2 and the 

intercept also reduce from 0.043 and -0.46 in Scenario A1 to 0.035 and -0.38 in 

Scenario B1. 

Overall, the estimated T and S tomograms from the HT survey (Scenario B) are 



 
 

better than those from multiple simultaneous pumping tests (Scenario A). This result 

confirms the hypothesis that aquifer responses to changes in operations and locations 

of pumping wells, as an equivalent basin-scale HT survey, carry new information on 

aquifer heterogeneity. Moreover, it is unnecessary to conduct the pumping test to reach 

a steady-state, and we recommend that transient data be collected for HT inversion in 

field hydraulic tests. 

4.2.3. Comparison among Temporal Sampling Schemes 

The estimated T fields from Scenarios B2 and B3 (Figs. 7b and 7d) are closer to 

the reference fields than those tomograms from Scenarios A2 and A3 (Figs. 7a and 7c), 

while R2, L2, slope and intercept also indicate the improvement of T estimates from 

Scenarios B2 and B3 (Figs. 8b and 8d) in comparison with Scenarios A2 and A3 (Figs. 

8a and 8c). Plots of the S tomograms and evaluation metrics from Scenarios B2 and B3 

(Figs. 7f, 7h, 8f, and 8h) also show better S estimates than Scenarios A2 and A3 (Figs. 

7e, 7g, 8e, and 8g). Therefore, it is clear that tomographic survey leads to better T and 

S estimates than multiple simultaneous pumping tests at the same locations, consistent 

with the previous results of baseline analysis. 

Addtionally, the inversion results from different temporal sampling schemes show 

that Case 2 yields the best-estimated fields of T and S, attributing to the optimal 

selection of head data points controlling the early-mid-late curves of well hydrographs 

for HT analysis. This finding also indicates that such head data used for HT inversion 

in Case 2 carry sufficient information to characterize this basin-scale aquifer 

heterogeneity accurately. 

Although the estimated fields (Fig. 7) from Case 3 are comparable to those 

reference fields, the metrics (R2, L2, slope, and intercept) are inferior to those from Case 

2 (Fig. 8). The temporal sampling scheme of Case 3, covering only the mid-late curves 



 
 

of hydrographs, can delineate the general patterns of predominant heterogeneity in T 

and S. It reduces the computational cost at the expense of some heterogeneous 

information. 

In short, we recommend that HT analysis should use head data at early-mid-late 

portions of well hydrographs for parameter estimation to maximize the power of HT 

and to save high computational costs. These results are consistent with findings by Sun 

et al. (2013). 

4.3. Role of Flux Data in Parameter Estimations 

The effect of flux data on parameter estimates is examined in this section. Given 

that Case 2 is the optimal temporal sampling scheme and is efficient in computational 

cost, head and flux data at ten times (i.e., the sampling strategy in Case 2) in 52 

observation wells generated from transient-state forward simulations are included in 

HT inversion. The estimated T and S fields from the joint inversion show further local 

refinement (Fig. 9) compared to those from head inversion (Figs. 7a, 7b, 7e, and 7f). 

Visually, head and flux inversion in Scenario B2 yields the estimated T and S 

tomograms (Figs. 9b and 9d) that resemble the reference fields (Fig. 2) the most, also 

as reflected in the quantitative metrics in the scatterplots (Fig. 10). 

For Scenario A (simultaneous pumping), the addition of flux data contributes to 

the improvements in T and S estimates. Specifically, relative to head inversion results 

(R2=0.87, L2=0.03, slope=0.87, intercept=0.67) (Fig. 8a), the performance of T 

estimation (Fig. 10a) from the joint interpretation of both head and flux data is better 

with higher R2 (0.90) and slope (0.91) as well as lower L2 (0.023) and intercept (0.47). 

While the performance of S estimation improves slightly, the R2 and the slope increase 

from 0.91 to 0.92, and from 0.91 to 0.92, respectively. The L2 and the intercept also 

drop from 0.044 to 0.041 and from -0.51 to -0.42, respectively (Figs. 8e and 10c). 



 
 

However, for Scenario B (HT), flux data appear to have negligible effects on HT 

inversion results, using head data only. Specifically, there is no significant improvement 

in the performance metrics from the joint inversion of both head and flux data (Figs. 

10b and 10d), relative to those from the head only inversion (Figs. 8b and 8f). The R2 

value remains unchanged for T estimates (0.90) and S estimates (0.93). The slope 

increases from 0.91 to 0.93 and from 0.93 to 0.95 for T and S estimates. While the 

intercept also drops from 0.48 to 0.37 and from -0.37 to -0.27 for T and S estimates, 

respectively. 

Additionally, the uncertainties in T and S estimates from head and flux joint 

inversion are compared with those from head inversion (Figs. 11 and 12). We present 

the uncertainty map of the estimate in addition to the mean estimate, because 

visualization of uncertainty maps would be informative and advantageous for 

identifying the role of flux measurements. 

According to the uncertainty maps of T estimates (Fig. 11), the inter-well areas 

show low residual variances (uncertainty) of lnT while the high variances are mainly in 

the vicinity of constant head boundaries. Comparing to the residual variances from head 

inversion in Scenario A2 (Fig. 11a), we observe that the areas with small uncertainty 

from the joint inversion increase significantly (Fig. 11b), indicating that flux 

conditioning improves the T estimates within the well field for short-term pumping tests 

in Scenario A. However, the addition of flux data in Scenario B2 seems to have minor 

changes in the uncertainty of T estimates (Figs. 11c and 11d). Only localized 

improvements in the original low variances zones are observed. So the effect of flux 

data on T estimation appears to be less prominent for Scenario B than Scenario A, 

supporting the results mentioned above of performance metrics. From another 

perspective, no matter head inversion or the joint inversion of head and flux, HT surveys 



 
 

(Scenario B) significantly reduce the uncertainty in T estimates (Figs. 11c and 11d) 

compared to conventional pumping tests (Scenario A) (Figs. 11a and 11b). 

By contrast, the effect of additional flux data on S estimates is less appreciable 

than T estimates for Scenarios A2 and B2 (Fig. 12). High residual variances of S 

estimates remain along the head boundaries, which may be explained by the non-

uniqueness of inversion near the domain boundaries (Yeh et al., 2015). For Scenario 

A2, flux measurements at the same monitoring locations slightly improve the S 

estimates and reduce the uncertainty in some areas (Figs. 12a and 12b). Additionally, 

for Scenario B2, a few changes in uncertainty maps between head inversion and joint 

inversion are visible (Figs. 12c and 12d). Such localized reduction of uncertainty in S 

estimates may contribute to improvements in some metrics (slope and intercept), as 

illustrated in the scatterplots. On the whole, flux measurements do not significantly 

enhance mapping of aquifer heterogeneity for long-term HT inversion (Scenario B), 

which may be ascribed to less room for improvement in S estimates considering the 

excellent performance of head inversion (Fig. 8f). 

We emphasize that the geologic zonation model is assumed known, and each zone 

has low variances of lnT and lnS (0.1) in the experiments. Due to low variability in each 

zone, the benefits of specifying accurate mean values of T and S outweigh the benefits 

of flux information. As a result, when the correct zonal T and S mean values are the 

initial guesses of inverse models, the improvements due to additional flux data on the 

estimates are less prominent, substantiating Tso et al. (2016). However, the importance 

of the inclusion of flux measurements is vivid. Compared with head data, flux 

measurements carry additional nonredundant information on aquifer heterogeneity, 

highly pertinent to the connectivity between the pumping wells and the observation 

wells. This finding corroborates the work by Tso et al. (2016) about the cross-



 
 

correlation between flux and hydraulic conductivity. More importantly, when the 

distributed mean properties are known, the flux data play a more important role in the 

short-term pumping tests (Scenario A) than the long-term HT survey (Scenario B). 

Because flux data contribute more to the improvement of parameter inversion for 

Scenario A than Scenario B, if reliable geological data are available, we encourage that 

head and flux data be jointly collected for conventional short-term pumping tests, while 

the role of flux data is insignificant for the long-term HT surveys in such porous-media 

aquifers without fissures or fractures. However, the inversion of the zonation model 

based on inaccurate geological information may yield worse inversion results (Zhao & 

Illman, 2018; Zhao et al., 2016). Thus, the influence of inaccurate geological data on 

inversion results remains to be examined in future studies. 

Unlike hydraulic head observation, the measurement of groundwater flux at an 

observation well is far from routine for groundwater monitoring works. Nonetheless, 

there is a growing interest in flux measurements in a groundwater monitoring network, 

given that flux measurements can enhance the mapping of fracture distributions in 

geologic media (Tso et al., 2016; Zha et al., 2014). Furthermore, it plays a vital role in 

predicting contaminant migration for groundwater remediation (Kuhlman et al., 2008; 

Liu et al., 2020a; Ni, Yeh, & Chen, 2009). Among numerous borehole methods for 

groundwater flux measurements, the point dilution method (Drost et al., 1968) is well 

described in many books, while heat (Melville, Molz, & Güven, 1985) or tracer (Palmer, 

1993) is an alternative approach. In addition, electronic borehole flowmeter profiling 

(Young & Pearson, 1995) is widely used to address flow variations along a borehole. 

In unconsolidated geologic media, much attention is paid to field in-situ methods, 

because they are free from borehole effects and are superior to borehole methods in 

determining both magnitude and direction of groundwater flux (Cremeans, Devlin, 



 
 

McKnight, & Bjerg, 2018; Essouayed, Annable, Momtbrun, & Atteia, 2019; Osorno, 

Devlin, & Firdous, 2018; Thomle, Strickland, Johnson, Zhu, & Stegen, 2020). 

In practice, head measurements at many fully screened wells only represent depth-

averaged head values, and they do not carry important information about vertical 

aquifer heterogeneity (Li et al., 2008). Flux measurements along the well screen during 

HT surveys may overcome the limitation of the depth-averaged head measurements at 

full-screen observation wells by incorporating information about vertical distribution 

of hydraulic conductivity (Tso et al., 2016; Zha et al., 2014). Although this work 

discussed the role of flux measurements for subsurface characterization in a 

groundwater basin where geological information is well known, further investigations 

remain on the inclusion of flux data into inverse models for regions that lack geological 

data. 

4.4. Implications on NCP Groundwater Management Practices 

Implementing the groundwater exploitation reduction program in the NCP 

provides an excellent opportunity for characterizing the subsurface hydraulic 

heterogeneity over the basin. It is the time to collect the data of regional groundwater 

exploitation intelligently, requiring multi-agencies collaboration and data sharing. This 

study suggests that data collection should include the spatial locations and screen 

intervals of existing pumping and observation wells, the time-variant pumping rates, 

the observed well hydrographs, geological data, etc. Moreover, we must take advantage 

of the well hydrographs and pumping operations data in the NCP, accumulated over 

many years. So we recognize that it is a realistic and feasible way to resolve the issues 

of aquifer heterogeneity in the NCP. 

5. Conclusions 

A cost-effective, large-scale HT survey for groundwater basins is feasible by 



 
 

changing the operations of existing pumping wells. Specifically, the operational 

variations of pumping wells at different locations cause the overlap between the 

stressed areas of different pumping events. The head fluctuations in the monitoring 

wells respond differently to the variations of well operation, which results in the time-

variant groundwater flow fields. The disparity of regional head distributions suggests 

that well hydrographs likely carry new information about the hydraulic connections 

among pumping and monitoring wells at various locations. This basin-scale HT survey 

saves a significant amount of investment by taking full advantage of aquifer responses 

to the changes in operations of existing pumping wells. 

The results of both steady-state and transient-state inversions demonstrate the 

advantage of HT surveys in characterizing basin-scale heterogeneity over conventional 

pumping tests at fixed locations. Information during HT surveys carries more non-

redundant information on the hydraulic heterogeneity than those from multiple 

simultaneous pumping tests. Additionally, the transient-state inversion outperforms the 

steady-state inversion in T estimates. For this reason, we recommend that transient data 

in field tests should be collected for HT inversion. 

We propose an optimal temporal sampling strategy for basin-scale HT analysis. 

Head data at the early, intermediate and late-time from well hydrographs should be 

selected for the HT analysis to maximize the power of HT and save high computational 

costs. Such an optimal temporal sampling scheme can yield the best-estimated fields of 

T and S in this basin-scale aquifer. The use of the mid-late data of hydrographs captures 

the general patterns of predominant heterogeneity and reduces the computational 

expenses, but at the cost of some heterogeneous information. 

For conventional pumping tests, the addition of flux data contributes to significant 

improvements in T and S estimates. However, for HT surveys, flux data appear to have 



 
 

little effect on HT inversion results. There is no significant improvement in the 

performance metrics from the head and flux joint inversion. Due to low variability in 

each geological zone, the use of distributed zonal mean values as initial guesses 

generates good T and S estimates from head inversion, which leaves less room for 

improvement in estimates from additional flux information. Therefore, if geological 

knowledge is available in the real world, we encourage that head and flux data be jointly 

collected for conventional short-term pumping tests. In contrast, flux measurements are 

insignificant for long-term HT surveys in such basin-scale porous-media aquifers 

without fissures or fractures. 

Admittedly, there are limitations inherent in this study. Firstly, a two-dimensional 

synthetic numerical experiment was examined without considering other unknown 

sources (such as leakage, etc.). Secondly, this study uses the known geologic zonations 

as prior information of inverse models for all scenarios and cases. This study also 

assumes that boundary conditions for inverse modeling are perfectly known, reducing 

the uncertainty of inverse solutions. Besides, only one possible hypothetic basin was 

investigated. The inverse problem is not well-defined. Such as, it could have many 

possible solutions. Our results should be treated as one possibility. Unless a Monte 

Carlo simulation (Wang et al., 2021) with many realizations is conducted, our results 

may vary. 

Despite these limitations, the results of this study demonstrate the superiority of 

HT survey over the multiple simultaneous pumping tests and advance the knowledge 

of the effective selection of informative monitoring data in the time domain and the role 

of flux measurements in parameter estimations. The basin-scale tomographic survey is 

a step forward in aquifer characterization, which could optimize the design of HT 

surveys and guide field data collection for basin-scale subsurface characterization as 



 
 

championed by Yeh and Lee (2008) and Yeh et al. (2008). 
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Table 1. Design of Case A and Case B in the steady-state experiments.

　 Stress Pumping Wells Pumping Rate 
(m3/d) Annotation

Case A Stress 1 18 pumping wells 
(combined below) -3000

Multiple 
Simultaneous 
Pumping tests

Stress 1 6 pumping wells 
(1/10/32/51/54/62) -3000

Stress 2 6 pumping wells 
(2/22/27/36/48/52) -3000Case B

Stress 3 6 pumping wells 
(14/16/37/40/42/64) -3000

HT Survey
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Table 2. Design of Scenario A and Scenario B in transient-state experiments.

Scenario Stress Pumping 
Rate (m3/d)

Time Period 
(days) Status Pumping Well ID Annotation

-8000 0-1000 normal rate
-4000 1001-2000 reduction

0 2001-3000 shut down

1/10/32/51/54/62
(pumping event 1)

-8000 0-1000 normal rate
0 1001-2000 shut down

-4000 2001-3000 reduction

2/22/27/36/48/52
(pumping event 2)

0 0-1000 shut down
-8000 1001-2000 normal rate

Scenario A Stress 1

-4000 2001-3000 reduction

14/16/37/40/42/64
(pumping event 3)

Multiple 
Simultaneous 

Pumping Tests

-8000 0-1000 normal rate
-4000 1001-2000 reduction

0 2001-3000 shut down

1/10/32/51/54/62
(pumping event 1)

-8000 0-1000 normal rate
0 1001-2000 shut down

-4000 2001-3000 reduction

2/22/27/36/48/52
(pumping event 2)

0 0-1000 shut down
-8000 1001-2000 normal rate

Stress 1

-4000 2001-3000 reduction

14/16/37/40/42/64
(pumping event 3)

-8000 0-1000 normal rate
-4000 1001-2000 reduction

0 2001-3000 shut down

2/22/27/36/48/52
(pumping event 1)

-8000 0-1000 normal rate
0 1001-2000 shut down

-4000 2001-3000 reduction

14/16/37/40/42/64
(pumping event 2)

0 0-1000 shut down
-8000 1001-2000 normal rate

Stress 2

-4000 2001-3000 reduction

1/10/32/51/54/62
(pumping event 3)

-8000 0-1000 normal rate
-4000 1001-2000 reduction

0 2001-3000 shut down

14/16/37/40/42/64
(pumping event 1)

-8000 0-1000 normal rate
0 1001-2000 shut down

-4000 2001-3000 reduction

1/10/32/51/54/62
(pumping event 2)

0 0-1000 shut down
-8000 1001-2000 normal rate

Scenario B

Stress 3

-4000 2001-3000 reduction

2/22/27/36/48/52
(pumping event 3)
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Table 3. Design of three cases for temporal sampling.

　 Selected data for inversion Annotation
Case 1 all head data with a time step of 100 days Baseline analysis

Case 2 Ten head data for each observation well 
(5, 10, 15, 20, 30, 1000, 1500, 2000, 2500, 3000 day) Early-Mid-Late data

Case 3 Five head data for each observation well
(1000, 1500, 2000, 2500, 3000 day) Mid-Late data
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Fig. 1. Map of the synthetic groundwater basin showing the steady-state flow field with no pumping, 
configurations of pumping wells and monitoring wells, boundary conditions, as well as geological zones. 
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Fig. 2. Reference transmissivity (a) and storativity (b) fields in the synthetic domain. 
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Fig. 3. Groundwater flow fields generated from (a) Case A and (b-d) Case B. 
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Fig. 4. T tomograms for (a) Case A and (b) Case B, as well as the corresponding scatterplots of reference 
lnT versus estimated lnT for (c) Case A and (d) Case B. 
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Fig. 5. The estimated transmissivity tomograms (a, b) and the corresponding storativity tomograms (c, d) 
for Scenarios A1 and B1. 
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Fig. 6. Scatterplots of reference versus estimated values of the transmissivity (a, b) and the storativity (c, d) 
for Scenarios A1 and B1. 
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Fig. 7. The estimated transmissivity tomograms (a-d) and the corresponding storativity tomograms (e-h) for 
Scenarios A2, B2, A3, and B3. A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



For Peer Review

 

Fig. 8. Scatterplots of reference versus estimated values of the transmissivity (a-d) and the storativity (e-h) 
for Scenarios A2, B2, A3, and B3. A
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Fig. 9. The estimated transmissivity (a, b) and storativity tomograms (c, d) from head and flux joint 
inversions for Scenarios A2 and B2. 
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Fig. 10. Scatterplots of reference versus estimated values of transmissivity (a, b) and storativity (c, d) from 
head and flux joint inversions for Scenarios A2 and B2. 

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



 

Fig. 11. Variances (uncertainties) of the T estimates from (a) head inversion in Scenario A2, (b) head and 
flux inversion in Scenario A2, (c) head inversion in Scenario B2, and (d) head and flux inversion in Scenario 

B2. 

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



 

Fig. 12. Variances (uncertainties) of the S estimates from (a) head inversion in Scenario A2, (b) head and 
flux inversion in Scenario A2, (c) head inversion in Scenario B2, and (d) head and flux inversion in Scenario 

B2. 
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