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A B S T R A C T   

Mapping aquifer heterogeneity is a pressing need for managing regional groundwater resources. Many studies 
have shown that combining hydraulic tomographic surveys with point-scale geological information is viable for 
detailing meter-scale to kilometer-scale hydraulic heterogeneity of aquifers. However, due to the complexity of 
aquifer systems, few field investigations have been conducted on basin-scale systems. In this study, we collected 
datasets of stream stages, groundwater levels, and borehole logs from 35 wells in a river plain during the wet 
season, when flood events altered the groundwater flow fields. We then analyzed these datasets using correlation 
analysis and a geostatistical inverse model. The hydraulic transmissivity and storage coefficient distributions 
were inverted based on different numbers of geological zones. By validating the estimated parameter fields with 
independent datasets, we demonstrated that appropriate selection of the number of geological zones, using point- 
scale geological information and clustering, improved the estimated fields. Further increasing the number of 
zones beyond an appropriate number deteriorated the estimates at the basin-scale site. The proposed method 
offers a cost-effective approach for basin-scale characterization. The better knowledge of subsurface hydraulic 
heterogeneity can support water resource management decisions.   

1. Introduction 

High-resolution characterization of subsurface hydraulic character-
istics is crucial for managing, conserving, and protecting groundwater 
resources at the scale of our interests (Yeh et al., 2023). Properties like 
permeability and specific storage of the subsurface affect the movement 
of groundwater, which impacts the rate and direction of groundwater 
flow and migration of hazardous and valuable chemicals in the aquifer. 
Accurate mapping the distributions of these properties can assist in 
developing effective groundwater management strategies, including 
identifying potential contamination sources or optimizing the remedi-
ation wells’ placement. The presence of fractures, faults, and other 
geological structures can also significantly affect water flow and 
contaminant migration through the subsurface. Additionally, certain 
types of soils and rocks may be more prone to retaining or spreading 
contaminants. As such, characterizing these properties with high spatial 

resolution can improve our strategies for preventing or mitigating 
contamination. 

Many studies have emphasized the importance of site-specific het-
erogeneity among the various factors contributing to the effectiveness of 
aquifer management. For instance, Hartmann et al. (2017) reported that 
aquifer heterogeneity determines the groundwater recharge rate and its 
sensitivity to climate variability. Sarris et al. (2022) suggested that when 
the number of monitoring wells is limited, contaminant detection rates 
are higher when the heterogeneity is greater. Michael and Khan (2016) 
stressed that while heterogeneous and equivalent homogeneous simu-
lations produce similar management insights, the spatial distribution of 
properties and their correlation can significantly affect solute transport 
rates and directions relative to equivalent homogeneous systems. Luo 
et al. (2020) interpreted the long-term water-supply pumping/injection 
records and showed the importance of inter/intra-layer heterogeneity in 
predicting solute transport in a synthetic multi-aquifer/aquitard system. 
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For these reasons, an intelligent groundwater resources monitoring and 
management framework was suggested considering a detailed hydro-
geology characterization (Hoffman, 1993; Yeh et al., 2008; Yeh et al., 
2023). 

While various aquifer characterization methods exist, characterizing 
subsurface hydraulic heterogeneity through river stage variation is a 
technique that is currently being developed. This method is based on the 
joint interpretation of non-fully-redundant information about aquifer 
heterogeneity carried by the groundwater variation fields induced by 
the river stage variations during the propagation of a flood wave from 
upstream to downstream (Yeh et al., 2009). The flood wave generates 
different flow fields, each of which reflects the heterogeneity in certain 
parts of the aquifer from a specific perspective. Field investigations have 
revealed that the pressure responses of aquifers due to river excitations 
can propagate for several kilometers or more than ten kilometers in 
confined or semi-confined aquifers, with fluctuations ranging from a few 
centimeters to meters (Sophocleous, 1991; Promma et al., 2007; Jardani 
et al., 2012; Ramirez-Hernandez et al., 2013; Hsiao et al., 2017; Wang 
et al., 2017). 

Over the past few decades, the potential of river stage variation for 
subsurface characterization has been widely recognized. Yeh et al. 
(2009) demonstrated the potential of river stage tomography in syn-
thetic stream-aquifer systems using event-based flood waves. Jardani 
et al. (2012) inverted the transmissivity field of a heterogeneous alluvial 
aquifer along a tidal river. Wang et al. (2017) used seasonal river stage 
variations as excitation sources to characterize an alluvial fan with 
complex hydrogeological structures. The resolution of estimates is 
influenced by the time scales of the river stage variation, and Wang et al. 
(2019) further investigated the different forms of river stage fluctuation. 
They suggested that, if noise levels are similar, event-based flood waves 
are better than long-term periodic excitations. 

The basin-scale sites usually have geological maps that provide the 
distribution of different types of rock and surficial deposits, as well as 
the locations of geologic structures such as faults and folds. Practitioners 
typically use these geological data obtained from boreholes and out-
crops to build conceptual models (Troldborg et al., 2007; Refsgaard 
et al., 2012; Enemark et al., 2019; Jafarzadeh et al., 2022). In this 
traditional approach, the area of interest is divided into several hydro-
geological zones based on available geological data, such as outcrops, 
geological maps, and borehole logs, and homogeneous hydraulic pa-
rameters are assumed throughout each zone. While the approach may be 
practical, inaccurate geological information leads to persistent discus-
sions about the structural adequacy (Gupta et al., 2012) and the ne-
cessity to evaluate alternative models (Troldborg et al., 2007; Refsgaard 
et al., 2012; Schöniger et al., 2015). 

To address the large-scale geologic features, Liu and Oliver (2005) 
used the ensemble Kalman filter to adjust facies boundaries to match 
production data. A level set method and total variation prior Bayesian 
inversion were proposed by Cardiff and Kitanidis (2009), Lee and 
Kitanidis (2013), and Iglesias et al. (2016) to identify the boundaries 
between large-scale geologic structures. The level set method is flexible 
to map geologic structure boundaries in any shape, size, or number. 
While these methods are general for facies-dominated problems, the 
small-scale heterogeneity within each geologic structure and its impact 
on the facies identification were not contemplated. 

Advances have been made to develop methods for including quali-
tative geological data while considering the within zone variability. The 
geological data can be collected using core samples (Zhao et al., 2016) or 
inferred using well logging tools such as Hydraulic profiling tool (Zhao 
and Illman, 2022). Zhao et al. (2016) demonstrated that when cali-
brating steady-state groundwater models with varying subsurface con-
ceptualizations and parameter resolutions, the highly parameterized 
geostatistical inversion approach with a geological model as prior in-
formation performed the best. The performance of high-resolution 
geostatistical models with uniform prior mean was slightly worse. 
Subsequently, improved accuracy and resolution of estimated hydraulic 

parameter fields have been observed through transient-state studies in a 
sandbox (Luo et al., 2017), meter-scale research sites (Zhang et al., 
2016; Zhao and Illman, 2018; Zhao and Illman, 2022), and kilometer- 
scale field sites (Zha et al., 2019; Luo et al., 2022). Only a few tomo-
graphic surveys have been demonstrated in basin-scale systems (i.e., 
tens of kilometers or more) where hydraulic parameter distributions are 
estimated based on sparse prior geological datasets. 

The objective of this study focuses on assessing the importance and 
potential of including sparse geological information in a basin-scale 
groundwater model inversion, where the boundaries of different types 
of depositions are suspected and uncertain. We intend to (1) demon-
strate the application of integrating existing multiscale datasets to 
identify subsurface features at a tens of kilometers scale aquifer system 
and (2) investigate the optimal number of zones used in the prior model 
for the basin-scale investigation. To achieve these goals, we acquired 
historical groundwater level data from a plain where many individual 
flood waves along the rivers are generated by heavy rainfalls. Addi-
tionally, we obtained geological borehole log data from the site. With 
these datasets, we expect to demonstrate that the groundwater level 
responses induced by changes in stream stages contain valuable infor-
mation about aquifer heterogeneity. Proper analysis of the datasets 
using a highly parameterized geostatistical inverse model with the aid of 
available geological information from the boreholes could yield high- 
resolution maps of hydraulic parameters, such as transmissivity (T) 
and storage coefficient (S) of the field site. 

2. Site descriptions 

2.1. Topography 

The Pingtun Plain is located in southern Taiwan, approximately 25 
km in width and 60 km in length, with an area of 1,200 km2 (Fig. 1a). It 
is surrounded by foothills and river valleys (Alishan Mountain Range) to 
the north, Lingkou Hills to the west, the Taiwan Strait to the south, and 
the Central Mountain Range and Chaochou Fault to the east. Three 
major rivers, the Gaoping River, Donggang River, and Linbian River, 
flow through the plain from northeast to southwest and discharge into 
the Taiwan Strait. The elevation gradually decreases from 200 m above 
the sea level towards the southwest coast. Groundwater levels are 45 m 
below the ground near the mountain front and only a few meters below 
the ground surface in the southwest part of the plain. 

2.2. Geology 

The geological profiles (Fig. 1b), inferred from well logs, reveal at 
least three aquifers over a depth of 220 m (Central Geological Survey, 
1994). These aquifers are connected to each other at the north and east 
parts of the plain, where deposition is mainly gravel (as shown in blue 
zones in Fig. 1b). The middle and tail of the plain consist of non-marine 
deposit gravel and sandy aquifers. They are separated by the aquitards 
(as shown in yellow zones in Fig. 1b), characterized as marine deposition 
due to abundant fossils such as shells and foraminifera. The aquitards 
pinch out in the upstream and mountain front regions. These geologic 
features reflect the rising and falling of the mean sea levels caused by 
global climate change late in the Quaternary Period. The sediment dis-
tribution in the plain follows a gravel, sand, and clay pattern from the 
top to the tail of the plain. This pattern is consistent with the river 
deposition process: angular conglomerates and breccias settle down first 
at the headwater where transport energy is high, while the arkose and 
finer materials, such as silt and clay, are precipitated at the middle and 
tail of the river, where transport energy is low or even transported 
further into the ocean. 

The hydraulic conductivity values of each aquifer are primarily be-
tween 1 and 10 m/day, with values gradually decreasing from the 
northeast to the southwest as they approach the shoreline. The top 
aquifer is more permeable than the second and third aquifers. The top 
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aquifer is more than 150 m thick in the upstream and mountain front 
regions where three aquifers are connected. The thickness of the top 
aquifer gradually decreases to around 30 m towards the shoreline. The 
thickness of the second aquifer is around 10 to 80 m and that of the third 
aquifer is about 50 to 90 m. These three aquifers span across the entire 
plain. 

2.3. Hydrological data availability 

The groundwater monitoring network comprises 60 evenly distrib-
uted groundwater stations, with more than 130 monitoring wells 
installed at depths ranging from 10 to 200 m. Most of the wells are 
screened at a single depth. For this study, 35 monitoring wells were 
selected. The remaining wells are excluded because their screen in-
tervals are opened at the second and third aquifers. The screen intervals 
of selected wells were opened at the unconfined or partially confined 
aquifer, mostly ranging from 15 to 40 m below the surface. The wells 
located at the north and east parts of the plain or near the mountain front 
may have openings at depths up to 100 m below the surface. The water 
levels are recorded hourly. 

There are three stream gauging stations (white triangles), one at the 
top (G1), one in the middle (G2), and one at the tail of the plain (G3), 
along the Gaoping River, namely Tjimur, Liling Bridge, and Wanda 
Bridge, respectively. Two stream gauging stations, Teochew (G4) and 
Gangdong No. 2 Bridge (G5), are located along the Donggang River at 

the middle and tail of the plain. The Xinpi gauging station (G6) at the 
midstream of the Linbian River provides additional data on river flow in 
the southeast corner of the plain. The river stage and flow rate are 
recorded hourly. 

The selected daily stream stages, flow rates, and groundwater levels 

Fig. 1. a) topography of the study plain. the blue lines represent rivers, the black squares are groundwater monitoring wells, and the white triangles indicate the 
stream gauge stations. b) the geological profiles based on core samples (figure adapted from Central Geological Survey, 1994). (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. The stream stage variations (at the concentric triangle (G2) in Fig. 1a) 
and groundwater level variations during 2006 (at the concentric square in 
Fig. 1a). The groundwater level station is 2.5 km away from the river’s 
main channel. 
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(markers in Fig. 2) are used to explore the hydrological processes and 
subsurface heterogeneity in the Pingtun Plain. The data are chosen to 
minimize storage requirements during inversion while preserving 
stream stage and groundwater level fluctuations. Fig. 2 shows the time 
series of stream stage (concentric triangle, G2) and groundwater level 
variations (concentric square, 2.5 km away from the river’s main 
channel) from 1/1 to 12/31, 2006, which reveal their significant cor-
relation during the rainfall season from May to October 2006. The rising 
and falling trends in groundwater levels are consistent with but lag 
behind the river stage fluctuations. Also, the groundwater fluctuations 
are smoother than the river stage. Other stream stage and groundwater 
level fluctuations are presented in Fig. S1. 

3. Methods 

While Fig. 2 illustrates that the groundwater fluctuations correspond 
to the river stage variations, many natural processes (e.g., precipitation, 
mountain front recharge) or human activities (e.g., pumping and irri-
gation) at different time scales and frequencies may induce similar re-
sponses in the groundwater level. Differentiating the effects of various 
excitations on groundwater level signals is necessary for this study. 
Because of the lack of comprehensive data and knowledge of all the 
natural processes and human activities, correlation analysis is employed 
to study the temporal variation of river stage and groundwater data, 
allowing us to identify the most suitable time period where the rela-
tionship between the two variables is most significant. Afterward, we 
use a geostatistical algorithm and the river stage and groundwater data 
to estimate T and S distributions in the plain. This section briefly dis-
cusses the correlation analysis, the k-means++ clustering, and the 
Successive Linear Estimator (see Fig. 3 for the flow chart). 

3.1. Groundwater flow and river models 

The 2-D groundwater flow in a heterogeneous confined aquifer is 
described as 

∇⋅[T(x)∇h(x, t)] = S(x)
∂h(x, t)

∂t
(1)  

subject to the initial and boundary conditions 

h|Γ1
= h(x, t)h = h(x, t0) (2)  

where h is the head responses (L), T is the hydraulic transmissivity (L2/ 
T), S is the storage coefficient (-), x is the vector in x and y directions, t 
represents time (T), and Γ1 is the prescribed head at the Dirichlet 
boundary. 

The linearized diffusion wave equation is employed to describe the 
movement of a flood wave as it propagates downstream. The equation is 
a simplified form of the Saint-Venant equations. It is derived from the 
continuity and momentum equations that govern the flow of water in a 
channel (Yen and Tsai, 2001). 

D
∂2h(x, t)

∂x2 − c
∂h(x, t)

∂x
=

∂h(x, t)
∂t

(3)  

in which D is the generalized hydraulic diffusivity (L2/T) and c is the 
wave celerity (L/T). 

Since rivers are generally losing streams during the wet season in 
Pingtun Plain, we assume that the influence of the aquifer on stream 
flow is negligible. Hence, we use a one-way coupling scheme to incor-
porate the river into the groundwater flow model, which helps to reduce 
the computational cost of a fully-coupled model. Specifically, the 
diffusion wave equation is first employed to simulate the stream stages 
along the river based on the observed river stage or flow rate. Afterward, 
the resulting stream stages were used as the prescribed heads along the 
river in the groundwater flow model. 

3.2. Spatial correlation analysis 

Cross-correlation is a statistical analysis that quantifies the similarity 
of two time series as a function of the time lag of one relative to the 
other. The analysis plays a critical role as it serves two important pur-
poses. Firstly, it helps to confirm whether the river stage influences 
significant changes in groundwater levels during flood events. Such 
knowledge is crucial for understanding the complex interactions be-
tween surface water and groundwater systems and predicting ground-
water response to changes in the river stage. Secondly, the spatial 
patterns of correlation can confirm whether they reflect the known 
geological structure of the study area. In other words, a better under-
standing of the hydrological system can be achieved by cross-validating 
the results of spatial correlation analysis with geological surveys. 

The correlation between river stage at different gauging stations and 
groundwater fluctuation at each individual well is evaluated by: 

Cor(τ) =
∑ [h1(t) − h1][h2(t − τ) − h2]

σh1σh2
(4)  

where Cor(τ) is the cross-correlation (-), τ is the time lag or sampling 
point lag (T), and h1 and h2 represent the time series of stream stage (L) 
and groundwater level (L), respectively. The overbar represents the 
mean, and σ is the standard deviation of the corresponding time series. 
After establishing these correlations, they are interpolated and 

Fig. 3. The flowcharts of Successive Linear Estimator, SLE.  
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extrapolated using ordinary kriging to the entire plain. The exponential 
variogram is used. The correlation lengths of all directions are 20 km. 

3.3. K-means++ Clustering 

The K-Means++ clustering algorithm (Arthur and Vassilvitskii, 
2007) partitions a dataset into groups based on the similarity between 
data points in the same group and dissimilarity to data points in other 
groups based on the Euclidean distance or any other appropriate dis-
tance metric. This method can be used to define the geological formation 
because it consists of similar physical characteristic that distinguishes a 
formation from adjacent subsurface in a geographical region. 

The algorithm consists of four steps. First, randomly select one data 
point from the dataset as the first centroid. Second, calculate each 
points’ distance to the nearest centroid. Third, select the next centroid 
from the remaining data points with a probability proportional to the 
square of the calculated distance, which ensures that points farther away 
from the existing centroids are more likely to be chosen as new cen-
troids. Repeat the second and third step until k centroids have been 
selected. Fourth, assign data points to the nearest centroid. This algo-
rithm is more likely to be well-spaced and representative of the under-
lying data distribution than the original k-mean algorithm. It reduces the 
chances of converging to suboptimal solutions and improves the overall 
performance. 

3.4. Successive linear estimator (SLE) 

The successive linear estimator (Yeh et al., 1996; Xiang et al., 2009) 
is a powerful tool for estimating subsurface hydraulic parameters and 
state variables based on spatial and temporal observations. This inverse 
algorithm considers hydraulic parameters and state variables as a spatial 
stochastic process characterized by statistical information such as mean, 
variance, and spatial correlation function. The estimated parameter 
field, discretized into nf elements, is iteratively determined using a linear 
estimator that incorporates observed and simulated head values and the 
sensitivity of the observed head to the estimated parameters. The linear 
estimator is: 

f̂
(r+1)

= f̂
(r)
+ω(r)[h* − h(r)] (5)  

in which f̂ (nf × 1) is the estimated T or S, h* (nd × 1) is the observed 
head, h(r) (nd × 1) is the simulated head based on the estimated pa-
rameters from the rth iteration, nd is the number of observations, and the 
superscript r is the iteration index starting from zero. ω(r) (nf × nd) is a 
weighting matrix that links the heads to parameters. This weighting 
matrix is solved by: 

ω(r)[ε(r)hh + θ(r)I] = ε(r)fh (6)  

where ε(r)hh (nf × nd) is the covariance matrix of head at rth iteration and 

ε(r)fh is the covariance matrix of head to T or S. The term θ(r) is a dynamic 
stabilizer that ensures numerical stability of solving an inverse matrix. 
We utilize the Levenberg-Marquardt algorithm. I is the identity matrix. 

The covariance matrices ε(r)hh and ε(r)fh are derived from the first-order 
approximation: 

ε(r)hh = J(r)T
fh ε(r)ff J(r)

fh and ε(r)fh = ε(r)ff J(r)
fh (7)  

in which J(r)fh (nf × nd) is the sensitivity of the head to the estimated 
parameters during the rth iteration. It is evaluated by the adjoint 
approach (Sykes et al., 1985; Sun and Yeh, 1990). ε(r)ff (nf × nf) is the 
residual covariance matrix of T or S at rth iteration and is given by: 

ε(r+1)
ff = ε(r)ff − ω(r)ε(r)Tfh (8) 

The diagonal terms of ε(r)ff represent the uncertainty of the parame-
ters, while the off-diagonal terms represent the cross-covariances be-
tween parameters. They provide information about the uncertainty and 
correlation between the estimated parameters. At iteration r = 0, ε(r)ff is 
constructed based on the prior geological knowledge of T or S using 
variances, correlation lengths, and covariance finctions. 

The iteration process terminates when the maximum iteration 
number is reached or when the mismatch between the simulated and 
observed head is smaller than a user-specified value. In summary, SLE 
starts with some geostatistical information on T and S parameters, 
including the mean, variance, and correlation scale. It then fuses the 
water level information by iteratively updating the conditional mean T 
and S fields and their covariance functions. The estimated fields, 
conditioned on the given datasets, are unbiased and are the most likely 
estimates with the smallest variance (uncertainty). 

4. Spatial correlation analysis 

Fig. 4a to 4e illustrate the contour maps of the cross-correlation 
values between the stream stage at different gauging stations and the 
groundwater level at all monitoring wells in the Pingtun Plain at 
different selected time lags. Different time lags were selected to reflect 
high correlation values between the stream stage at different gauging 
stations and the groundwater levels at all the wells. 

Fig. 4a shows the contour map of correlation coefficients between 
groundwater levels at all observation wells and the river stage recorded 
at the Tjimur station (the solid triangle (G1) upstream of the Gaoping 
River. This map indicates that the river stage at G1 is highly correlated 
(R > 0.6) with groundwater levels along the river flow path and the 
eastern boundary of the plain (i.e., the Central Mountain Range and 
Chaochou Fault). The high correlation areas are shown in warm colors. 
The topographical and geological maps indicate these areas are located 
along the mountain front gravel deposition (blue area in Fig. 1b). Be-
sides, the large time lags may represent the infiltration through the 
vadose zone along the mountain front region. On the other hand, there is 
no significant correlation (R < 0.3) between the river stage at the Tjimur 
station (G1) and the observation wells in the Donggang River basin and 
the coastal area (greenish blue areas in Fig. 4a). This result is likely 
indicative of a relatively low T or high S barrier blocking the pressure 
wave propagating from the Gaoping River to the Donggang River basin. 

Fig. 4b shows a high correlation between the river stage at the 
midstream of Gaoping River (i.e., Liling Bridge, G2) and groundwater 
levels at observation wells from the north to the middle of the plain 
(shown in warm colors). This contour map suggests that the subsurface 
hydraulic characteristics in these regions are likely similar. On the other 
hand, the correlation between river stage variations at downstream of 
Gaoping River (Wanda Bridge, G3) and groundwater levels, presented in 
Fig. 4c, is only significant in narrow regions along the river and is less 
correlated with groundwater levels in the Donggang River basin (shown 
in green and blue colors), despite being close to the downstream of 
Gaoping River. 

The contour maps in Fig. 4d and 4e, illustrating the correlation co-
efficients between groundwater levels and river stage located on the 
midstream and downstream of Donggang River, have similar spatial 
patterns as those in Fig. 4a, 4b, and 4c, except the correlations change 
from low to high values. Note that the groundwater level variations 
within the Donggang River basin are highly correlated with the Dong-
gang River but less correlated with groundwater levels in the Gaoping 
River basin, indicative of some groundwater barrier between these two 
river valleys. 

5. Field experiment 

After conducting correlation analysis, we carried out a tomographic 
analysis using the field dataset to depict the hydraulic heterogeneity of 
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the shallow aquifer. We conducted the tomographic analysis using 
different prior mean hydraulic parameter values and distributions. 
Initially, we used uniform mean T and S values without incorporating 
any prior hydrogeological knowledge into the model. These parameters 
are effective values based on a single zone. Next, we used the calibrated 
mean T and S values from a calibrated zonation model as the prior mean, 
which involves three steps. Firstly, we utilized the datasets obtained 
from the Central Geological Survey (1994) to derive a kriged parameter 
field. These datasets included the ranges of T and S values, as well as the 
borehole geological data. Secondly, since the variabilities of the 
parameter values and their geographical positions (x and y) differ 
significantly in magnitude, we linearly rescaled both types of values to 
the range between 0 and 1. Thirdly, we created a zonation model con-
sisting of several zones using a k-means++ clustering algorithm. The 
zones were clustered based on the rescaled kriged values and their 
rescaled geographical positions. We considered different numbers of 

zones (1, 2, 3, 4, 5, 6, 7, 8, and 10) and ensured that the zone patterns 
maintained the general structure of the site geology. Afterward, SLE 
estimated each zone’s effective T and S values that yielded simulated 
heads best matched the observed head. Finally, these effective param-
eter values of zones serve as the prior mean to calibrate the highly 
parameterized model. This method aims to avoid the conceptual model 
surprise and unforeseen consequences of incorrect prior parameter 
structures in implementing inverse modeling (Bredehoeft, 2005). 

We use two criteria to evaluate the inversion results. The first cri-
terion is the scatterplot of the simulated head changes versus the 
observed data, using the L2, and linear regression line’s slope, intercept, 
and R2. The second is to validate the estimated T and S fields by their 
ability to predict the head changes in the observation wells not used in 
the inversion. 

Fig. 4. The correlation contour maps at the selected time lag between the stream stage at different gauging stations (Tjimur (G1), Liling Bridge (G2), Wanda Bridge 
(G3), Teochew (G4), and Gangdong No. 2 Bridge (G5), respectively) and the groundwater levels at all monitoring wells. The white squares denote the wells, and the 
black triangles denote the stream gauge stations. 
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5.1. Model layouts 

The study site was discretized into 5619 grids, each measuring 0.5 
km × 0.5 km. We selected groundwater level data from June to 
September 2006, collected from 35 monitoring wells evenly distributed 
throughout the catchment. We randomly selected water levels from 23 
wells for model calibration, and the remaining water levels from 12 
wells were used for validation. The effect of the unsaturated zone is 
ignored because the groundwater level fluctuations are much smaller 
than the aquifer thickness. To minimize the effect of mountain front 
lateral recharge, we used a time-varying head boundary to encircle the 
aquifer by extrapolating these boundary heads using kriging with data 
collected from all monitoring wells. The simulation domain along the 
coast is extended 5 km outward and is set as a zero constant head 
boundary. 

We simulated the initial groundwater level by spinning up the model 
for six years before June 2006 with the mean hydraulic transmissivity (1 

m2/day), the mean storage coefficient (10− 5), a time-varying head 
boundary, and stream stage variations. These mean parameter values 
were chosen because the plain primarily consists of gravel and sand 
deposits. The process of initializing (spinning up) a numerical simula-
tion of a groundwater flow model with a set of model parameters, initial 
conditions, and boundary conditions allows the simulation to run until 
the groundwater levels at a later time (such as June 2006) are no longer 
affected by uncertain initial head distributions. 

The SLE algorithm requires the prior spatial statistics of the unknown 
lnT and lnS to be specified. Based on hydrogeological knowledge of the 
site, we set the geometric mean of T to 1 m2/d and the mean S to 10− 4. 
We also set the variance of lnT and lnS to 1.0. Although these variance 
values were uncertain, they only had minor impacts on the parameter 
and uncertainty distributions because the variances exist in both the 
numerator and denominator in equations (4) and (5), and their effects 
on the estimations cancel out. We described the spatial correlation using 
an exponential covariance function with correlation scales of 15 km in 

Fig. 5. The estimated a) hydraulic transmissivity T (m2/day) and b) storage coefficient S fields based on uniform mean. c) The scatterplot of observed and calibrated 
groundwater levels. The white squares denote the wells where the groundwater levels were utilized to calibrate the model. Note that the groundwater levels from 23 
(out of 35) wells between June to September 2006 are used to invert the parameter fields. 
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both the x and y directions for lnT and lnS. Correlation scales represent 
the average size of the heterogeneity based on a visual analysis of the 
geological map (Fig. 1b). The estimates of variance and correlation 
lengths were imprecise, but their effects on the estimated T and S fields 
were minimized due to the large number of hydraulic data, which 
already carried information about the detailed site-specific 
heterogeneity. 

5.2. Estimated T and S distributions based on uniform means 

We inverted the parameter fields of the highly parameterized con-
ceptual model, starting with uniform mean values for T and S across the 
entire aquifer. Fig. 5a and 5b display the estimated distributions for T 
and S, respectively, while Fig. 5c shows the scatterplot of observed and 
calibrated groundwater levels from 23 wells between June to September 
2006. The scatterplot demonstrates excellent calibration as most 
groundwater levels are distributed along the 45-degree line, indicating a 
good agreement between the observed and simulated levels. 

Fig. 5a shows that the estimated high T zones (red color) are pri-
marily located in the upstream and mountain front regions near the 
northern and eastern boundaries, while the relatively low T zones (blue 
color) are in some areas of the middle plain and extend along the 
shoreline. The T patterns are consistent with the geological cross- 
sectional profiles based on core samples (Fig. 1b), where gravel de-
posits are concentrated in the upstream region, and fine sand and some 

silt/clay materials are primarily located along the coast. In addition, the 
relatively low T zone at the upper left-hand side of the plain (around x 
= 10 and y = 50) is consistent with the sand deposition (green color) in 
the same region in Fig. 1b. The large T values in the upstream and 
mountain front region correspond to the thick gravel deposition (greater 
than150 m thick). The estimated S field (Fig. 5b) follows a similar trend, 
except in regions near the upstream of the Linbian River. We observed 
that the estimated S values in this upstream region are relatively small 
(blue color near the right-hand side boundary), while the T values in the 
same area are high. This negative correlation was difficult to relate to 
the geology at this site. T values are typically positively correlated with S 
values in sedimentary deposition (Wang et al., 2022a) and negatively 
correlated with fractured geological media (Illman et al., 2009). 

Next, we speculate that incorporating prior information about the 
general distributions of coarse-grained (e.g., gravel) and fine-grainded 
(e.g., sand and silt) material zones as starting T and S fields for river 
stage tomographic analysis may improve the estimates at the basin-scale 
site. This speculation is based on the usefulness of geological informa-
tion at the meter-scale and kilometer-scale sites reported by Zhao and 
Illman (2017, 2018) and Zha et al. (2019). It would be interesting to 
investigate whether geological information at the basin-scale site is still 
helpful since the basin-scale geological profiles based on point-scale core 
samples likely have significant uncertainty. 

Fig. 6. The estimated hydraulic transmissivity T (m2/day) and S fields with different number of zones as prior mean. The levels presented in the contour legends are 
identical to those in Fig. 5a and 5b. The numerals located in the upper left corner of the first row denote the quantity of zones. The white squares in the first row 
denote the wells where the geological information was utilized to create the zones. The white squares in the second and third rows denote the wells where the 
groundwater levels were utilized to calibrate the model. 
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5.3. Estimated T and S distributions based on calibrated zonal means 

As mentioned, the estimated field from the zonation model was used 
as prior mean values for calibrating the parameter values of a highly 
parameterized conceptual model. The first row of Fig. 6 displays seven 
zonation geometries. The patterns of these zone models reflect the 
general geological structure of the site at different degrees (Fig. 1b). For 
the two-zone model, the boundary of zones roughly reflects the depo-
sition of gravel (blue in Fig. 1b) and fine-grain materials (green and 
yellow in Fig. 1b). As the number of zones increased, the zone geome-
tries further characterized each basin’s upstream, midstream, and 
downstream. 

The estimated T and S fields, using different numbers of zones as 
prior information, are illustrated in the second and third rows of Fig. 6. 

The time series of observed and calibrated groundwater levels with 4 
prior mean zones are presented in Fig. 7 (Please refer to Fig. S2 for the 
scatterplots and Fig. S3-1 to S3-9 for the time series of different number 
of zones). These calibrated heads generally captured the correct trends, 
as the observed heads are within the range of uncertainty (i.e., one 
standard deviation). Fig. 8 summarized the calibrated head perfor-
mances, including L2, slope, intercept, and R2, of the inversion as a 
function of the number of zones. Unlike the previous studies in the 
meter-scale and kilometer-scale sites (Zhao and Illman, 2017, 2018; Zha 
et al., 2019) who reported that the prior geological information im-
proves the calibration performances, our inversion in a basin-scale site 
shows that the calibration performances remain similar when the 
number of zones is between 1 and 4. As the number of zones increases to 
more than 4, the L2 and intercept deteriorate rapidly. This result may be 

Fig. 7. The observed and calibrated groundwater levels with 4 prior mean zones. Please refer to Fig. S6 for the well locations. The red markers are the groundwater 
levels used to invert the parameter fields. The black dash lines are the uncertainty of simulated groundwater levels. It is estimated using the first order approximation 
(Eq. (7)). 
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because the prior zone information is based on sparse point samples and 
limited soil types (i.e., gravel, sand, and silt/clay). While a few numbers 
of zones can capture the large-scale high T and low T (or S) information, 
the over-classification of clusters may misplace some regions in the 
wrong zone. In addition, previous studies have suggested that if the 
inversion is ill-defined (a common situation for most applications), the 
inversion using a highly parameterized model is sensitive to the initial 
parameter values (Illman et al., 2008; Wang et al., 2017; Liu et al., 
2020). An inappropriate prior mean value can lead to over- or under- 
estimated parameter values or spurious anomalies. 

Lastly, the estimated parameter fields were evaluated for their ability 
to predict independent head datasets (i.e., validation of the estimates). 
Fig. 9 compares the predicted groundwater levels to the actual values 
collected from 12 monitoring wells, excluded in the inversion, as a 
function of the number of zones. The time series of observed and vali-
dated groundwater levels with 4 prior mean zones are presented in 
Fig. 10 (Please refer to Fig. S4 for the scatterplots and Fig. S5-1 to S5-9 
for the time series of different number of zones). The predicted heads 
generally captured the correct trend, as indicated by the slope and R2 

values close to 1. The L2 values in the figure suggested that the 
geological data improved the estimates. As the number of zones 
increased from 1 to 3, the L2 decreased by 62%. Further increasing the 
number of zones did not improve the validation, and even deteriorated 
the estimate when the number of zones exceeded 6, as indicated by the 
increasing discrepancies between the predicted and observed heads. 

Overall, the geological information at the basin-scale site is still 
valuable, despite the uncertainties in the prior information of zones 
derived from sparse point samples and limited soil types since it captures 
the large-scale trends of hydraulic parameters. By selecting an appro-
priate number of zones, the calibrated geological clustering model can 
be a useful prior mean for highly parameterized models and improve the 

estimates. 

6. Conclusions and future work 

We analyzed the groundwater level responses induced by the vari-
ations of river stage due to the heavy rainfall events in a plain. These 
variations of groundwater levels exhibited different patterns, reflecting 
the heterogeneous nature of the aquifer at this site. We selected the data 
during wet seasons, which consist of six significant rainfall events. 

Through the correlation analysis of stream stage and the corre-
sponding groundwater level changes, we confirm that the groundwater 
levels likely carried non-redundant information about aquifer hetero-
geneity. These datasets were then analyzed using the geostatistical in-
verse code SLE to derive the spatial T and S distributions. These 
estimated fields corroborated with the geological model. Clustering 
schemes for deriving initial zonal mean T and S values for SLE to 
improve the estimates were examined. The impacts of the number of 
prior zones on the estimated T and S values were studied by validating 
the estimated field with the independent datasets not used in the 
calibration. 

We conclude that integrating existing multiscale datasets, including 
the groundwater levels and point-scale geological information, by the 
appropriate scheme improves the inversion. Compared with the inver-
sion using a uniform prior mean, the estimated fields with a few pre- 
calibrated zonal means lead to a better validation performance, while 
the calibration performance remains similar. This result stems from the 
fact that a few numbers of zones delineated based on the geological 
information, despite uncertainties of the zones derived from sparse point 
samples and limited soil types, can capture the large-scale trends of 
hydraulic parameters. 

As the number of zones increases, the estimates deteriorate because 
the clustering does not consider hydrogeological processes such as 
sediment transport and deposition physics. With the classification solely 
based on the relative distance between the core samples and the limited 
number of soil types, the over-classification of clusters may misplace 
some regions in the wrong zone. For the study, pre-calibrated zonal 
mean with approximately three zones resulted in the best validation 
results. 

The proposed method provides a cost-effective way for basin-scale 
characterization using existing monitoring networks. The stream stage 
and groundwater level monitoring records provide information on site 
hydrogeology that has largely been untapped. As unexpected droughts 
largely influence the water resources needs of every sector of the society, 
a systematic review of the historical hydrological records can save the 
investigation costs by deploying resources to regions requiring further 
refinement. The valuable insights into subsurface hydraulic heteroge-
neity can be used as evidence to support management decisions. 

The future work can include joint inversion of head data and other 
information, such as hydraulic profiling tool (Zhao and Illman, 2022; 
Zhao et al., 2023), flowrate profiles (Tso et al., 2016), chemistry (Gumm 
et al., 2016; Mayer et al., 2007), groundwater age (Castro and Goblet, 
2005; Marshall et al., 2020), and geophysical data (Tsai et al., 2017; 
Wang et al., 2022b). A 3-D groundwater model can also be used, as 
borehole logs are mainly used to delineate the vertical changes of sub-
surface heterogeneity. The borehole logs by nature should benefit the 
groundwater modeling most in refining the model in the vertical di-
rection. In addition, the method to improve the S estimate needs further 
investigation. Lastly, we promote the vision of exploiting natural stimuli 
for characterizing basin-scale subsurface. 
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Fig. 8. The calibrated head performances (L2, slope, intercept, and R2) with 
different number of zones. 

Fig. 9. The validated head performances (L2, slope, intercept, and R2) with 
different number of zones. 
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